
Lean, Agile & Kanban Processes for Software Projects

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 1 of 67

Lean Kanban Practitioner

A Lean Approach to Efficient Workflow Management

Student Guide

Lean, Agile & Kanban Processes for Software Projects by Evan Leybourn
is licensed under a Creative Commons Attribution-ShareAlike 3.0
Australia License <http://creativecommons.org/licenses/by-sa/3.0/au/>

Evan Leybourn
evan@theagiledirector.com
Twitter: @eleybourn

http://creativecommons.org/licenses/by-sa/3.0/au/
mailto:evan@theagiledirector.com

Lean, Agile & Kanban Processes for Software Projects

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 2 of 67

OTHER WORKS BY

EVAN LEYBOURN

DIRECTING THE AGILE ORGANISATION – BY

EVAN LEYBOURN

http://theagiledirector.com/book

 Embrace change and steal a march on

your competitors

 Discover the exciting adaptive

approach to management

 Become the Agile champion for your

organisation

Business systems do not always end up the way that we first plan them. Requirements can

change to accommodate a new strategy, a new target or a new competitor. In these

circumstances, conventional business management methods often struggle and a different

approach is required.

Agile business management is a series of concepts and processes for the day-to-day

management of an organisation. As an Agile manager, you need to understand, embody and

encourage these concepts. By embracing and shaping change within your organisation you

can take advantage of new opportunities and outperform your competition.

Using a combination of first-hand research and in-depth case studies, Directing the Agile

Organisation offers a fresh approach to business management, applying Agile processes

pioneered In the IT and manufacturing industries.

http://theagiledirector.com/book

Lean, Agile & Kanban Processes for Software Projects

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 3 of 67

TABLE OF CONTENTS

Other Works by Evan Leybourn .. 2

Directing the Agile Organisation – by Evan Leybourn ... 2

Table of Contents ... 3

What Does Agile Mean? .. 5

The Agile Manifesto ... 6

Agile Methods ... 7

Key Points .. 8

The Origin of Lean .. 9

Understanding Waste .. 10

Critical Success Factors ... 11

Common Misconceptions .. 11

An Overview of Kanban as a Software Development Method ... 13

Scrum Overview ... 14

Test Driven Development (TDD) Overview .. 17

Extreme Programming (XP) Overview ... 18

Feature Driven Design (FDD) Overview .. 18

Project Roles ... 20

Project Team ... 21

Interested and Committed ... 21

Primary Roles .. 22

Deming’s 14 Points for Managers .. 23

Project Initiation .. 25

Specifications in Agile? ... 26

Beginning the Process .. 26

Outcomes .. 26

Lean, Agile & Kanban Processes for Software Projects

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 4 of 67

Cost / Time / Scope... 27

Stories, Tasks and the Backlog.. 29

Product Backlog ... 30

Review the Backlog .. 33

Accuracy .. 34

Estimating Effort .. 34

How? ... 35

Estimating Time ... 36

Continuous Delivery ... 37

Daily Lifecycle ... 38

Development Hints .. 39

Test Driven Development ... 40

Continuous Integration ... 41

5S .. 44

Daily Stand-up ... 44

Product Review ... 45

Kanban ... 46

Task Lifecycle ... 47

Value Stream Mapping .. 50

Kanban Boards ... 52

Inspection .. 55

Cumulative Flow Diagrams .. 56

Cycle Time Run Charts.. 60

Kaizen ... 63

References ... 66

Books & Links.. 67

Tools ... 67

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 5 of 67

WHAT DOES AGILE MEAN?

‘On two occasions I have been asked, “Pray, Mr Babbage, if you put into the machine

wrong figures, will the right answers come out?” [...] I am not able rightly to apprehend

the kind of confusion of ideas that could provoke such a question.’

Charles Babbage, 1864

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 6 of 67

THE AGILE MANIFESTO

The “Agile Software Development Manifesto” was developed in February 2001, by

representatives from many of the fledgling “agile” processes such as Scrum, DSDM, and XP.

The manifesto is a set of 4 values and 12 principles that describe “What is meant by Agile".

THE AGILE VALUES

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

THE AGILE PRINCIPLES

1. Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter time-scale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity – the art of maximising the amount of work not done – is essential.

11. The best architectures, requirements, and designs emerge from self-organising teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behaviour accordingly.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 7 of 67

THE LEAN PRINCIPLES

In addition to the principles from the Agile manifesto, there are 7 principles defined for lean

development.

1. Eliminate waste

2. Amplify learning

3. Decide as late as possible

4. Deliver as fast as possible

5. Empower the team

6. Build integrity in

7. See the whole

AGILE METHODS

The term Agile actually refers to a concept, not a specific methodology. There are many, and

sometimes conflicting, methods that can be used under the Agile umbrella. These include;

 Agile Unified Process,

 Behaviour Driven Development (BDD),

 Crystal Clear,

 Dynamic Systems Development Method (DSDM),

 Extreme Programming (XP)

 Feature Driven Development (FDD),

 Kanban

 Lean Development,

 Rapid Application Development (RAD),

 IBM - Rational Unified Process (RUP),

 Scrum,

 Test Driven Development (TDD),

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 8 of 67

KEY POINTS

All of the above methods have four key points in common.

1. Iterative design process

2. Continuous stakeholder engagement

3. Aims for quality and reliable systems

4. Short development cycles (up to a month) allows to regular delivery of improvements

This shows that an agile approach is appropriate in contexts where the outcomes are not

known (or can’t be known) in advance and where the delivery of the outcomes cannot be fully

controlled. This is especially relevant in business intelligence environments given the natural

ambiguity around reporting requirements, data quality and information management.

The following figures1 are an excellent example of the differences between traditional (or

phased) development vs. the agile approach of iterative development.

FIGURE 1: THE TRADITIONAL APPROACH (PHASED DELIVERY OF KNOWN OUTPUTS)

FIGURE 2: THE AGILE APPROACH (ITERATIVE DELIVERY TO MEET CHANGING EXPECTATIONS)

1 Images with thanks from Jeff Patton: http://www.agileproductdesign.com/

http://www.agileproductdesign.com/

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 9 of 67

THE ORIGIN OF LEAN

Lean Manufacturing, often called lean production, or just ‘Lean’, is a streamlined

manufacturing and production technique, as well as a philosophy that aims to reduce

production costs, by eliminating all ‘wasteful’ processes. Put another way, Lean focuses on

‘getting the right things to the right place, at the right time, in the right quantity, to achieve

perfect workflow’.

Lean Manufacturing provides a set of techniques to identify, and eliminate, waste which, in

turn, improves quality, and reduces overall production time and cost. In addition, Lean

Manufacturing also improves the ‘flow’ of production through the system. These techniques

include:

 Value stream mapping: Analysing and planning the flow of materials and information

that is required in the production process.

 5S: This is an approach to quality and continuous improvement. The five S’s are: Sort

(to clean and organise the work area), Set in Order (arrange the work area to ensure

easy identification and accessibility), Shine (mess prevention and regular maintenance

of the work area), Standardise (create a consistent approach for carrying out

production processes), Sustain (maintain the previous four S’s through discipline and

commitment).

 Kanban: This will be covered later.

 Fail-proofing: Prevent human errors before they occur.

 Production levelling: Ensure that each step in the production process delivers at a

constant rate, so that subsequent steps can also deliver at a constant rate. No step in

the production process should produce goods at a faster rate than subsequent steps,

or consume goods at a slower rate than preceding steps.

Finally, Lean Manufacturing emphasises Kaizen (改善) or Continuous Improvement; the

ongoing, incremental and regular technique of improving all processes, products and

functions relating to production, resources, organisational management, and the supply chain.

It should be noted at this point that many of the terms in Lean Manufacturing have been

translated from the original Japanese. As such, they often lose the context, or secondary

meanings, of the term. Where possible, this context is described throughout this course.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 10 of 67

UNDERSTANDING WASTE

The techniques and frameworks within Agile & Lean aim to increase development efficiency,

by eliminating all ‘wasteful’ processes. Drawing on the successful concepts from the Lean

manufacturing frameworks, we can define 3 major forms of waste.

 Mura (Unevenness): Mura exists where there is a variation in workflow, leading to

unbalanced situations, most commonly where workflow steps are inconsistent,

unbalanced, or without standard procedures.

 Muri (Overburden): Muri exists where management expects unreasonable effort from

personnel, material or equipment, most commonly resulting from unrealistic

expectations and poor planning.

 Muda (Waste): Muda is any step in the production workflow that does not add direct

value to the customer. The original seven wastes, as defined by the Toyota Production

System (TPS), were:

1. Transport,

2. Inventory,

3. Motion (moving more than is required),

4. Waiting,

5. Overproduction,

6. Over Processing (from poor design), and

7. Defects (the effort involved in inspecting for, and fixing, defects).

Additional and new wastes are not meeting customer demand, and are a waste of

unused human talent. There is further differentiation between Type 1 (necessary

waste, e.g. government regulations) and Type 2 (unnecessary waste).

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 11 of 67

CRITICAL SUCCESS FACTORS

The successful application of an agile methodology depends on the relative maturity of an

organisation in relation to Customer Engagement, Staff Resources, Technology, and

Processes. These measures are defined as follows:

 Customer Engagement – Customer Representatives involved in teams’ daily activities,

defines user stories, drives the prioritisation of stories, and has decision making

delegation of authority.

 Staff – have experience in an agile method, are skilled in the Standard Operating

Environment (SOE) toolsets, have an understanding of the underlying data and

technical infrastructure, and are conversant in the development, testing, and

configuration and release procedures.

 Technology – a stable and well documented technology stack, with clearly defined

ownership and service levels, providing discreet development, testing and release

environments that are sized and supported for the delivery of projects, and controlled

through rigorous configuration and release management.

 Processes – business processes exist for all domains, with cross stream

interdependencies defined and service levels agreed, and clear business ownership

and delegations of authority identified.

COMMON MISCONCEPTIONS

Being a generic term, Agile means different things to different people. Therefore, before we go

much further, I should clarify some of the more common misconceptions surrounding Agile.

 Agile is ad hoc, with no process control: First of all, Agile isn’t a lack of process. Agile

provides a range of formal processes, and methods, to inform work processes,

customer engagement and management models. Conversely, Agile isn’t about blindly

following the prescribed ‘agile’ methods and processes. Agile is about using your

common sense to apply processes, as determined by the current situation, and

shaped by the agile philosophy.

 Agile is faster and/or cheaper: Agile isn’t significantly faster, or cheaper, than

alternative frameworks. Put another way, in most cases you can’t get significantly

more effort out of your teams by moving to an agile approach. While there is an overall

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 12 of 67

efficiency gain when utilising agile methods, well-managed Agile and non-Agile teams

will deliver products and services in approximately the same time and effort.

 Agile teams do not plan their work or write documentation: Agile is not an excuse to

avoid appropriate planning or writing documentation. It is an on-demand, or Just-In-

Time, approach that encourages continuous planning and documentation, but only

when needed for specific stories. This allows customers and teams to determine if the

planning, or document, adds value to the process or product. It creates an opportunity

to emphasise valuable documents, and eliminate anything that isn’t useful.

 An Agile project never ends: While this may be true in some situations, the benefit of

Agile is that work will continue while the customer continues to gain business value,

and that value is worth more than the cost of developing it. Most projects, in any

industry, have a point of diminishing returns. This is the ideal time for an agile project

to end.

 Agile only works for small organisations: Agile works for projects, teams and

organisations of any size, not just small projects. That is not to say that it will work for

all organisations, but size is rarely a factor. Large and complex projects and

organisations are often excellent candidates for Agile transformation, where it is

difficult, or impossible, to know all your customer’s requirements in advance.

 Without upfront planning, Agile is wasteful: This assumes that your customer knows

the detail of all of their stories in advance. If this is true, then by all means, undertake

comprehensive upfront planning. However, in reality this is rare, and usually leads to

the greater ‘waste’ of having undertaken design and development work that was

ultimately unnecessary. Agile Business Management encourages minimal upfront

planning, ensuring everyone is working towards the same goal, and reduces the risk of

miscommunication.

 Finally, Agile is not the solution to all your problems. It is a change in approach and

culture that comes with its own set of benefits and issues.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 13 of 67

AN OVERVIEW OF KANBAN AS A SOFTWARE DEVELOPMENT METHOD

The original concepts of Kanban (カンバン) were developed in the 1940s and 50s by Taiichi

Ohno2 as part of the Toyota Production System, as a mechanism to control Just-In-Time (JIT)

production and manufacturing processes. Kanban, which approximately translates as

‘signboard’, is described as a ‘visual process management system that tells what to produce,

when to produce it, and how much to produce’. The modern Kanban method, as formulated by

David J Anderson in 20073, is an adaption of the original JIT approach, with an emphasis on

staff welfare and continuous process improvement practices. This is ultimately a strategy that

strives to improve a business return on investment by reducing waiting inventory and

associated carrying costs.

At its simplest, each prioritised task (or card) on a Kanban Board passes through a

visualisation of the team’s process, or workflow, as they happen. Each primary activity in the

team’s workflow is visualised as columns on the Kanban Board, usually starting at task

definition, and finishing with delivery to the customer. Of course, being Agile, these cards and

activities are visible to all participants, including the customer.

FIGURE 3: EXAMPLE KANBAN BOARD

2 Toyota Production System: Beyond Large-Scale Production, Ohno (1988).
3 Kanban: Successful Evolutionary Change for Your Technology Business, Anderson (2010).

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 14 of 67

While a Kanban workflow can become very complex, the simplest visualisation of workflow

has only 4 different states which a task would progress through during its lifecycle. These

states are;

1. Backlog – tasks that are waiting to be worked on

2. In Progress – currently being developed by a team member

3. Testing – undergoing integration, system or UAT testing

4. Done – complete and ready to be demonstrated and/or deployed

To identify, and control, bottlenecks and process limitations, each workflow state (or column)

has a limit, called a WIP, or Work In Progress Limit, to the number of currently active tasks.

This allows managers and team members to regularly monitor, and measure, the flow of

work.

In total, there are 6 core elements to Kanban:

1. Visualise (Kanban / Card Wall)

2. Limit WIP

3. Manage Flow (and reduce bottlenecks)

4. Make Policies Explicit

5. Feedback Loops

6. Improve Collaboratively

SCRUM OVERVIEW

Scrum is described as a ‘framework within which you can employ various processes and

techniques’, rather than a process, or a technique, for building products. The Scrum

framework is primarily team based, and defines associated roles, events, artefacts and rules.

The three primary roles within the Scrum framework are:

1. The product owner who represents the stakeholders,

2. The scrum master who manages the team and the Scrum process

3. The team, about 7 people, who develop the software.

Each project is delivered in a highly flexible and iterative manner where at the end of every

iteration of work there is a tangible deliverable to the business. This can be seen in the

following diagram.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 15 of 67

FIGURE 4: SCRUM FRAMEWORK

The requirements that form the basis of the project are collated into what is called a Project

Backlog, and is updated regularly. The features that are associated with these requirements

are termed user stories. This relationship is illustrated in the following diagram:

FIGURE 5: SCRUM PROJECT STRUCTURE

The work is time-boxed into a series of 1 to 4 week cycles where the business and project

team estimate which user stories in descending priority order are achievable each cycle, or

iteration. This subset of user stories from the Project Backlog form the basis of the Iteration

Backlog planned for delivery over that two week period.

Under Scrum, there are 3 timeboxed (or fixed duration) meetings held during an iteration plus

a daily stand-up meeting for the team, scrum master and (ideally) the product owner. At the

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 16 of 67

beginning of an iteration, features to be developed during the iteration are decided during the

iteration planning meeting. At the end of the iteration are another 2 meetings, the iteration

review and iteration retrospective where the team reviews the product and demonstrates the

use of the software, as well as reflect on, and improve, the iteration process itself.

After the iteration is complete, the next set of user stories is selected from the Project Backlog

and the process begins again. Burn rate is monitored to determine when funding will be

exhausted.

TABLE 1: KEY SCRUM CONCEPTS

Concept Description

Project Discreet set of end user requirements that
have been grouped, prioritised and funded.

Requirement The end user statement that outlines their
information need.

Iteration (also known as a “Sprint”) An iteration is a 1 to 4 week time-boxed event
focused on the delivery of a subset of user
stories taken from the Project Backlog.

Project Backlog The Project Backlog is the current list of user
stories for the Project. User stories can be
added, modified or removed from the Backlog
during the Project.

Iteration Backlog (also known as a “Sprint
Backlog”)

Subset of user stories from the Project
Backlog that are planned to be delivered as
part of an Iteration.

User Stories The user story is a one or two line description
of the business need, usually described in
terms of features.

Tasks Tasks are the activities performed to deliver a
user story.

Technical Debt This refers to items that were either:
 missing from the Planning meeting; or
 deferred in favor of early delivery.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 17 of 67

TEST DRIVEN DEVELOPMENT (TDD) OVERVIEW

Test-driven development is a development methodology that requires developers to create

automated tests before writing the code or function itself. If the tests pass, then the code is

displaying correct behaviour. These tests should be run automatically using one of the xUnit

applications.

There are 5 steps to TDD.

1. Create a test

2. Add the test to the test catalogue

3. Write the code

4. Run the tests (all of them)

5. Clean up the code as required. (Refactor)

FIGURE 6: TEST-DRIVEN DEVELOPMENT FLOWCHART

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 18 of 67

EXTREME PROGRAMMING (XP) OVERVIEW

XP is an agile development methodology, intended to accept and respond to changing

customer requirements.

XP describes four basic activities within the software development process.

1. Writing the software

2. Testing the software, regularly and automatically

3. Listening and understanding the customer

4. Designing, or refactoring, an application framework to reduce unnecessary

dependencies between features.

XP also includes development methodologies such as;

1. Pair programming, with two developers working together

2. Common code standards (documentation, naming conventions, whitespace)

3. An understandable system metaphor, where all classes and functions names should

be understandable.

FEATURE DRIVEN DESIGN (FDD) OVERVIEW

FDD is a model-driven process that consists of five basic activities. For accurate state

reporting and keeping track of the software development project, milestones that mark the

progress made on each feature are defined.

PROCESSES

 Domain Object Modelling: Define the domain of the problem to be solved and create

an object framework.

 Developing by Feature: Functions are broken into the smallest possible part and

developed in the order of priority.

 Individual Class Ownership: Each code class is assigned to a single owner who is

responsible for the consistency, and performance of the class.

 Feature Teams: A small, dynamically formed team that designs and develops each

feature.

 Inspections: Carried out to ensure good quality design and code.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 19 of 67

 Configuration Management: A log of all features and the source code that have been

completed to date.

 Regular Builds: Ensures there is always a fully functional system.

ACTIVITIES

Develop Overall Model:

 High level scoping

 Create domain walkthroughs for each modelling area

 Peer review of each model

 Merge into complete system model

Build Feature List:

 Split domain into subject areas

 Separate subject areas into business activities

 Separate business activities into individual features

 e.g. Confirm the password of user

Plan by Feature:

 Assign features to classes

 Assign classes to developers (or development teams)

Design by Feature:

 Create a set of features to be developed within two weeks

 Build sequence diagrams for each feature

 Refine model for each feature

 Inspect and review the design

Build by Feature:

 Develop the code for each feature and class

 Unit test

 Promote to build

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 20 of 67

PROJECT ROLES

‘So Mr Edison, how did it feel to fail 10,000 times?’

‘Young man, I didn’t fail, I found 9,999 ways that didn’t work’

Thomas Edison, anecdotal (on his invention of the incandescent light)

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 21 of 67

PROJECT TEAM

The project team is a self-governing group capable of independently delivering to a

customer’s requirements. As a result the team requires cross functional representation of

skills and knowledge in the data, tools and infrastructure domains.

A typical project team can be comprised of the following:

 Customer Representative or Product Owner (Scrum)

 Team Facilitator or Scrum Master (Scrum)

 Architects / Analysts

 Designers

 Developers

The project team characteristics and responsibilities are as follows:

 7 ± 2 (5 to 9) resources who are allocated full-time to the team

 Cross functional in nature across skills, applications, data and organisational

knowledge

 Self-empowered

 Responsible for delivering the product

 Determine the tasks required to deliver each feature

 Estimate the effort for each task

 Develop the features

 Resolve issues

Ideally the project team, including the Customer Representative are co-located.

INTERESTED AND COMMITTED

Interested roles are individuals who have an “interest” in the software development. Whilst

they should be kept informed of progress, they do not have the same level of responsibility

and input into the development as committed roles. Interested parties include the Users, the

customers and the Customer Representative.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 22 of 67

Committed roles are responsible for the software development, and are the people who “do”

the work. Committed parties include the Team Facilitator, the team and testers.

FIGURE 7: PIGS AND CHICKENS

PRIMARY ROLES

FIGURE 8: BUSINESS VS TECHNICAL ROLES

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 23 of 67

TABLE 2: PRIMARY TEAM ROLES

Role Primary Responsibility Typical Does Not

Users
Interested Role

 Use the software
 Identify issues &
 Provide feedback

 There are no typical
users.

 Set Scope
 Test Work

Customers
Interested Role

 Define, start and end
the project

 Internal managers
 External Clients

 Direct Work

Customer
Representative
Interested Role

 Manage the product
backlog

 Set the scope
 Approve Releases

 Project Manager
 Product manager

 Customer

 Manage the
team

Team Facilitator
Committed Role

 Manage the Agile
process

 Report on progress

 Project manager
 Team leader

 Team member

 Prioritise
features

Developers
Committed Role

 Develop features
 Resolve issues

cross functional
 Developer
 Designers

 Writers
 Administrators

 Prioritise
features

Testers
Committed Role

 Test
 Approve or reject

features for release

 Existing developers
 Dedicated testers

 Test their own
code

DEMING’S 14 POINTS FOR MANAGERS

I’d like to end this section with a look at some of W Edwards Deming approaches for lean

managers to transform business effectiveness. These points aim to change the focus of

management from growth through financial returns, to the more Agile approach of growth

through investment, innovation and strong staff engagement.

1. Create constancy of purpose toward improvement of product and service, with the

aim to become competitive, stay in business and to provide jobs.

2. Adopt the new philosophy. We are in a new economic age. Western management

must awaken to the challenge, must learn their responsibilities, and take on leadership

for change.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 24 of 67

3. Cease dependence on inspection to achieve quality. Eliminate the need for inspection

on a mass basis by building quality into the product in the first place.

4. End the practice of awarding business on the basis of a price tag. Instead, minimize

total cost. Move towards a single supplier for any one item, on a long-term relationship

of loyalty and trust.

5. Improve constantly and forever the system of production and service, to improve

quality and productivity, and thus constantly decrease costs.

6. Institute training on the job.

7. Institute leadership. The aim of supervision should be to help people and machines

and gadgets do a better job. Supervision of management is in need of overhaul, as well

as supervision of production workers.

8. Drive out fear, so that everyone may work effectively for the company.

9. Break down barriers between departments. People in research, design, sales, and

production must work as a team, in order to foresee problems of production and in

use that may be encountered with the product or service.

10. Eliminate slogans, exhortations, and targets for the work force, asking for zero defects

and new levels of productivity. Such exhortations only create adversarial relationships,

as the bulk of the causes of low quality and low productivity belong to the system and

thus lie beyond the power of the work force.

11. a. Eliminate work standards (quotas) on the factory floor. Substitute leadership. b.

Eliminate management by objective. Eliminate management by numbers, numerical

goals. Substitute leadership.

12. a. Remove barriers that rob the hourly worker of his right to pride of workmanship. The

responsibility of supervisors must be changed from sheer numbers to quality. b.

Remove barriers that rob people in management and in engineering of their right to

pride of workmanship. This means, inter alia, abolishment of the annual or merit rating

and of management by objective.

13. Institute a vigorous program of education and self-improvement.

14. Put everybody in the company to work to accomplish the transformation. The

transformation is everybody’s job.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 25 of 67

PROJECT INITIATION

aka Feasibility

aka Sprint 0 (Scrum)

aka Iteration 0 (XP)

 ‘It is always wise to look ahead, but difficult to look further than you can see.’

Winston Churchill, ~1960

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 26 of 67

SPECIFICATIONS IN AGILE?

Contrary to common opinion, it is very important to have a good, but lean, specification before

starting an agile project. By building this specification (or backlog in agile terminology) a

project will;

 Reduce Risk & Uncertainty

 Improve Decision Making and integrate With Long term Goals

 Improved cost planning (including Staff Hiring)

 Prioritise research and information Gathering

BEGINNING THE PROCESS

Unlike traditional waterfall methods, the specification phase of an agile project is very short;

usually no more than 1 or 2 days, and the full team should be available at inception. During the

period the customer should be made fully aware of their role. The design should contain the

following;

 Problem statement that needs to be addressed

 Desired business objectives, outcomes and benefits for this project

 Identified key stakeholders

 High level business requirements

 Architectural and technical scope

 Testing requirements

OUTCOMES

The outcomes from Project Initiation are:

 The team should be identified and brought together

 If not part of the team, identify and train the Customer Representative

 Create the backlog in low detail. Allow customers to slowly build the product

requirements throughout the process.

 Estimate the product backlog.

 Add any team training to the backlog as tasks.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 27 of 67

COST / TIME / SCOPE

“How much is this going to cost?” - “As much as you're willing to spend.”

“How long is this going to take?” - “As long as it necessary.”

“What am I going to get?” - “Whatever you tell us you want.”

FIXED COST

Where a customer asks for a fixed price quote prior to agreeing to project commencement,

but is flexible on what is delivered and how long it takes.

 Work in absolute customer priority order – reducing the time spent on technical helper

tasks will help meet short-term budget constraints (at the cost of long term, post-

project, efficiency)

 Monitor cycle time – this is your key indicator of cost

FIXED TIME

Where a customer asks for delivery by a certain date, but is flexible in scope and cost.

 Work in absolute business value order – increases the number of user stories

complete in a given time period (high business value = simple, moderate-high priority)

FIXED SCOPE

Where a customer asks for a fixed set of deliverables, but is flexible in the time it takes to

deliver and the cost of delivery. This is sometimes known as “heavy agile”.

 Focus on backlog definition and estimation during project initiation to ensure accurate

scope definition

FIXED COST AND SCOPE

Where the customer asks for a fixed price quote for a fixed set of deliverables. In this

situation, the final date for delivery is flexible. As well as the points in fixed cost and fixed

scope;

 Increase the estimate risk during project initiation – to ensure your quote for the

project allows for unexpected delays (which would impact on your cost to deliver)

 Update delivery date as required

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 28 of 67

FIXED COST AND TIME

Where the customer asks for a fixed price quote by a fixed time. In this situation, the exact set

of features (or scope) for delivery is flexible. As well as the points in fixed cost and fixed time;

 Calculate total cost based on average cycle time – which makes your quote to the

customer very simple.

FIXED TIME AND SCOPE

Where the customer asks for a fixed set of deliverables by a fixed time. In this situation, the

total cost to the customer is flexible. As well as the points in fixed time and fixed scope;

 Allocate additional time into the schedule to cater to unexpected defects or technical

debt

 Increase the size of the team prior to the end of the project if required – to ensure the

set of features are completed in time.

FIXED COST, TIME AND SCOPE

Where the customer gives no flexibility in the project.

Cancel the project – this is not an agile project. This should be run using a waterfall

methodology such as PRINCE2 (and even they are likely to fail without some flexibility)

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 29 of 67

STORIES, TASKS AND THE BACKLOG

‘Make everything as simple as possible, but not simpler.’

Albert Einstein (paraphrased), 1933

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 30 of 67

PRODUCT BACKLOG

FIGURE 9: PRODUCT BACKLOG

The backlog contains all the user stories (features) for the product. The Customer

Representative is responsible for defining the user stories, and assigning each with a priority

for delivery. The order may also be influenced by story dependencies or business value e.g. a

lower priority story may need to be done first before a higher priority story can be started.

The user stories describe the set of features that will satisfy each requirement. The high

priority user stories that are candidates for development in the short term require sufficient

detail for the team to solution, and should be sized to fit within a few days. As a guideline,

tasks and stories that involve waiting should be split into separate tasks and research tasks

should have a high estimate risk. This is done to enable accurate tracking.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 31 of 67

FIGURE 10: DESIGN AND PLANNING WORKFLOW

Each user story should meet the INVEST characteristics, as defined by Bill Wake.

 Independent: Each story should be as self-contained as possible, with minimal

dependencies on any other story. This allows for easy reordering or removal, as

customer stories change.

 Negotiable: The customer can change a story at any time, up to the point it enters

development.

 Valuable: Each story should deliver a tangible, and measurable, benefit to the

customer.

 Estimatable: The definition of each story is such that the team can estimate it.

 Small: The estimate, and delivery, of a story, should be between half a day to a few

days.

 Testable: Each story should have appropriate quality control and quality assurance

metrics, so the customer can validate their deliverables against the original story.

Each feature should contain, at a minimum, the function, priority, an estimate of the effort to

develop and the estimate risk (0 - 100%) based on how accurate the team feels the estimate

is.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 32 of 67

In can be helpful to structure each user story in the following format.

As a [role]

I want a [goal/desire]

So that [benefit]

The [role] is the expected end-user of the user story, who is usually different from the

customer. The [goal/desire] of each user story describes what should be delivered, and the

[benefit] provides the context, or the Why.

TABLE 3: KEY STORY ELEMENTS

Planning Element Description

User Story The user story is a description of the business need, usually
expressed as a feature.

Story Identifier Every user story will be assigned a unique identifier for
tracking purposes.

Tasks A task is typically a single activity that can be described in one
sentence that contributes to the delivery of a user story.

 Generally a task takes no longer than 4-16 hours of effort
to complete

 There may be one or many tasks per user story
 The task can only be assigned to and owned by one

person at a time

Task Identifier A unique identifier will be assigned to track each task, and
show which user story they are associated with.

Project Function This describes the architectural layer where the task activity
will be performed.

Assignee <Optional> This is the person who will be responsible for delivering the
task. The person assigned to the completion of the task may
also change at any point.

Estimate The estimate in hours is the amount of effort the team agrees
is required to complete the specified task. The estimate may
include:

 Analysis
 Build

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 33 of 67

 Unit Test

 Migrate from DEV to TEST
 Integration Testing

 Documentation

Estimate Risk Modifier This is a measure of the confidence level associated with the
estimate provided and represented as a numeric modifier.

REVIEW THE BACKLOG

The product backlog should be regularly reviewed by the Customer Representative and the

delivery team to ensure that the listed stories remain relevant, are appropriately ordered and

the estimates are still valid. This includes clarification, prioritisation and in some cases

investigation of the feasibility of the collated user stories. This activity also needs to take into

consideration any technical debt inherited from previous work.

This also provides the Customer Representative with the opportunity to communicate the

required scope of delivery, provide the business context and priority, and address any

questions the project team may have to assist with performing the solution decomposition

and estimation steps. Like all lean techniques, this is a JIT process and should not take more

than a few hours every month.

Ensure that sufficient notice is given to the team, so that they have sufficient adequate time to

consider solution options for discussion during the review, and prepare clarification questions

for the Customer Representative.

The participants for this session are as follows:

 Customer Representative

 Team Facilitator

 Team

 Testers

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 34 of 67

ACCURACY

FIGURE 11: ESTIMATE ACCURACY OVER TIME

It is important to note that to increase the accuracy of any estimate, the effort involved

increases exponentially. In Agile, we are only interested in the initial estimation.

ESTIMATING EFFORT

An Agile estimate is single number intended to represent the effort (or man-hours) required to

deliver a component, or user story, of the final product. As a result, to perform agile

estimation requires cross functional representation of all the requisite skills and knowledge in

the systems, data, tools and infrastructure during the estimation workshops.

All stories should be assigned as estimated effort, or cost, to implement. We use a modified

Fibonacci series, such as 1, 2, 3, 5, 8, 13, 20, 40, and 100, to represent effort. This encourages

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 35 of 67

features to be split into the smallest task possible, and provides a more realistic estimate

range.

As large stories bubble up to the top of the ready queue, they are broken down into their

composite tasks as re-estimated. The process of solution decomposition may reveal

additional tasks, or more complex tasks, that were not apparent during the initial estimation.

These are added, and the total estimate of the project is updated.

HOW?

Tasks can be estimated in 4 ways.

1. Expert opinion: The team member with specific understanding, or who is most likely to

develop the task, can provide a more accurate estimate of effort.

E.g. A database administrator can better estimate effort for database tasks.

2. Comparison: Comparing a task to another, already estimated, task.

e.g. "Task A is about twice the effort of Task B"

3. Components: If a task is too large to accurately estimate, break it into small sub-tasks.

e.g. User management can be broken into interface, login, ACL, etc.

4. Planning poker: If using Planning Poker, estimates must not be mentioned at all during

discussion to avoid anchoring. A timer may be used to ensure that discussion is

structured; any person may turn over the timer and when it runs out all discussion

must cease and a round of poker is played.

Each person lays a card face down representing their estimate of the task, and then

simultaneously turns their cards over.

People with high estimates and low estimates are given an opportunity to discuss their

estimate before anyone else can speak.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 36 of 67

Repeat the estimation process until a consensus is reached.

FIGURE 12: PLANNING POKER CARDS

ESTIMATING TIME

Converting an estimated cost into estimated time is very simple. There are 2 primary

modifiers that we use. Staff overhead and estimate accuracy (or risk).

STAFF OVERHEAD

This is a percentage modifier for staff availability to work on specific project tasks. It allows

you to take into account factors such as estimated leave, illness, breaks, daily stand-up

meetings etc. The industry standard modifier is 25%-40%, though you should modify this as

required. To calculate staff overhead, use the following process;

Staff Overhead = Average (actual hours worked per day)/total days - 1

CALCULATION

Story Cost x (Staff Overhead + 1) x (Estimate Risk + 1)

e.g. 4 x (25%+1) x (50%+1)

= 4 x 1.25 x 1.5

= 5 to 7.25 hours

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 37 of 67

CONTINUOUS DELIVERY

‘Treat your men as you would your own beloved sons. And they will follow you into the

deepest valley.’

Sun Tzu, ~6th Century BCE

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 38 of 67

DAILY LIFECYCLE

The daily lifecycle of team activities is as follows;

1. Team members select the next task to work on

2. Undertake the task as described

3. Commit and share the completed task with the rest of the team

4. Write and run the tests that will be used to verify they have been completed

successfully. Verification, unit testing and documentation need to be completed prior

to migrating the deliverable from DEV to SIT.

The assignee for a task may change at any of these steps. Team members will proactively

interact will their colleagues and any internal parties as required to progress the assigned task

to completion, including any quality assurance and review.

The governance of the daily lifecycle is through the daily stand-up.

FIGURE 13: WORK LIFECYCLE

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 39 of 67

DEVELOPMENT HINTS

FEATURES

Get the highest priority feature from the backlog. Allow developers to choose their work, don't

assign it.

DEVELOP

Agile also makes some suggestions on improving the development process. These are;

 Pair Programming: Two developers working together, the first as a coder and the other

as a reviewer. These roles should change regularly, and the pairs themselves should

switch pairs each day

 Code Standards: A common coding style (Documentation, Names, Whitespace, etc)

 System Metaphor: All classes and functions should be named such that their purpose

is understood.

COMMIT

Everyone must commit every day, and should never commit broken code. (Continuous

Integration)

TRANSPARENCY

Key to Agile is transparency between the product, the team and the customers.

Customers can:

 Attend daily stand-ups. However they should not talk. Questions should be directed to

the Customer Representative or Team Facilitator. An alternative is to record the daily

stand-ups and make the recording available to the customer.

 See the backlog in its current state.

 See the state of each task via a Kanban board or integrated dashboard.

 Access a test version of the software from the development environment.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 40 of 67

TEST DRIVEN DEVELOPMENT

KEY POINTS

Tests are written by the customer and developer together and are written before the code.

Both automated unit tests and user acceptance tests should be written. There is no issue with

using standards such as IEEE 829 and IEEE1008 to document and write tests.

By using TDD, the team can prove how well a project is going and how close to completion.

This in turn, allows customers and Customer Representative to make informed decisions

about the project.

TEST COVERAGE

The tests should cover;

 Software functions,

 Boundary cases,

 User interface,

 User experience,

 Non-functional components,

 Performance

TEST TYPES

There are 4 types of tests that can be written.

1. Defect

2. Functionality

3. Usability

4. Data

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 41 of 67

TDD IN DEVELOPMENT

FIGURE 14: TDD WORKFLOW

CONTINUOUS INTEGRATION

UNIT TESTING

Runs predefined tests to identify software defects

 Create tests for each class and function

 Create tests for all parameter combinations

 Create tests for all edge cases

 Create tests to examine the database for logical errors

 Create tests to detect interface defects (Selenium)

 Tests should be kept in the version control repository

 Test in a clone of the production environment

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 42 of 67

FIGURE 15: UNIT TEST SCREENSHOT

CODE STANDARDS

Inspect the developed code for deviations from the internal code standard

 Check for correct inline documentation (docblock)

 Check for correct variable naming conventions

 Check for correct whitespacing conventions

 Check for complex code that may require refactoring

 Check for incomplete or unused functions

FIGURE 16: CODE STANDARD SCREENSHOT

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 43 of 67

DOCUMENTATION

The following should be commented;

 Files

 Classes

 Functions

 Class Variables

 Complex Structures

Comments should contain;

 Description

 Author

 Usage

 Parameter description

 Return description

 References to other functions

 Copyright (file comments)

CODE COVERAGE

Calculate and display how much of the software is covered by unit tests. Aim for 80-90% code

coverage.

FIGURE 17: CODE COVERAGE SCREENSHOT

COMPILE

Run any compile or make scripts. All commits should compile.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 44 of 67

5S

5S is an approach to waste reduction, quality & continuous improvement (housekeeping)

defined by the lean approach. The 5 S’s are:

 Seiri (Sort): to clean and organise the work area

 Seiton (Set in Order): arrange the work area to ensure easy identification and

accessibility

 Seiso (Shine): mess prevention and regular maintenance of the work area

 Seiketsu (Standardize): create a consistent approach for carrying out production

processes

 Shitsuke (Sustain): maintain the previous 4S's through discipline and commitment

DAILY STAND-UP

The purpose of the daily stand-up meeting is to provide a consistent focus on incremental

progress and delivery demonstrated to the Customer Representative. It is intended to be

informative and interactive and align the team’s understanding of what is being worked on, by

whom and its current status.

This team meeting is strictly time-boxed to 15 minutes. All participants should answer the

following three questions:

1. What did you achieve yesterday?

2. What will you achieve today?

3. What impediment may prevent you from achieving your goal today?

It is the objective of the Team Facilitator to remove any impediment identified by the team.

Projects with multiple teams should hold a summary stand-up, also timeboxed to 15 minutes,

after the initial stand-ups. This meeting should bring together Team Facilitators from multiple

teams to answer the same 3 questions as before, but relating to their teams.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 45 of 67

PRODUCT REVIEW

At regular intervals, the Team Facilitator should hold a product review meeting to demonstrate

to the customer representative and customer (if different) the completed user stories for final

review for release to production. As the customer representative should have been involved in

the development and verification process on a daily basis this step should be straightforward.

During the meeting the team should:

 Present the completed work to the customer representative

 Review the work that was completed to date

 Review the work that is scheduled to be completed.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 46 of 67

KANBAN

‘Simplicity, carried to the extreme, becomes elegance.’

Jon Franklin, 1994

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 47 of 67

TASK LIFECYCLE

Agile processes are designed to promote a sustainable workload, where your teams,

management, and customers, are able to maintain a constant pace indefinitely. Teams have

the authority to design, plan, and estimate, each story, as well as the responsibility and

accountability for delivery. This level of ownership for work, combined with integrated

customer engagement, significantly improves workload management, which in turn reduces

overtime and stress. However, for this to be efficient there needs to be a simple mechanism to

manage, and level out, workflow within each team. This is where Kanban comes in.

Depending on your process workflow, a task will progress through a minimum of 4 different

states during its lifecycle. Each task and state should be visible to the team, Customer

Representative and customer; commonly this is done through a Kanban board (card wall) or

integrated dashboard.

FIGURE 18: BASIC TASK LIFECYCLE

The Assignee for a task may change at any of these steps. It is important to understand that

each state (and thus column on the Kanban board) represents a state within the development

workflow, not a handoff between team members. Team members will proactively interact with

their colleagues, and any internal parties, as required, to progress the assigned task to

completion, including any quality control and review.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 48 of 67

FIGURE 19: COMPLEX TASK LIFECYCLE

BACKLOG

The Backlog is the list of user stories (or tasks) that the Customer Representative maintains.

There may be a second backlog column “Ready” which contains those stories which have

been technically designed and are ready to be developed. Based on the logical sequencing of

tasks and agreed prioritisation, the project team members select the next task to work on and

promote this to the “In Progress” state.

IN PROGRESS

In Progress items are tasks that are actively being worked on. This includes both

development and unit testing activities. Once the task has been completed it is promoted to

the “Testing” state.

In Progress tasks include the following types of activity being performed:

 Analysis

 Build

 Unit Test

 Documentation

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 49 of 67

When a task has been completed the deliverable will be changed to the “Testing” state. In the

case of code based artefacts these will be promoted from the development environment to

the test environment.

SPECIAL TYPE: BLOCKED

Blocked items are stories and or tasks that have upstream or downstream dependencies

external to the project team that are preventing progress. These impediments are moved to

this holding state to highlight these issues to the Team Facilitator and Customer

Representative for escalation and resolution.

TESTING

Testing, in this context, is performed by the team’s specialist testing resources. Unit testing is

expected to be undertaken by the developers.

DONE

Tasks are considered “Done” when:

 Code has been produced, meets development standards, and has been checked in and

run against current version in source control

 Unit tests written and passed

 System tested and passed

 Quality Assurance reviewed

 Builds without errors for deployment

 Relevant documentation, including diagrams have been produced or updated and

communicated

The decision over whether a user story is done is based on whether all the pre-requisite tasks

associated with this story have been completed. The completed user stories are presented to

the Customer Representative for acceptance and sign-off. This can either be done individually,

or in a batch.

NOT DONE

Any tasks that are “not done” are reviewed in the context of the user stories that they belong to

and if this impacts whether the user story can be considered delivered. The not done tasks

may be rolled into a new user story, accrued as technical debt, or it may be decided that they

are no longer required and are removed.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 50 of 67

VALUE STREAM MAPPING

Teams can create Value Stream Maps to defines the ‘As-Is’ steps & roles for each task

lifecycle. That is, to create the workflow that will be used by the teams and visualised on the

Kanban board below.

FIGURE 20: EXAMPLE PROJECT VALUE STREAM MAP4

A value stream can be defined as all the steps – both value added and non value added –

required to take a product or service from its raw materials state into the waiting arms of a

happy customer. Each step is defined, articulated and mapped on the value stream (above).

The average time taken to complete each step (value add time) is measured, as well as the

time taken to move between steps (non-value add time).

In the example above, it takes 6 weeks to complete Requirements Analysis, and an additional

6 months from completing this to starting the Development & Testing.

Lean defines 10 steps needed to accurately define the value stream maps for each process

within a product family group. If there is only one process to be modeling, you can start from

step 5.

4 Image thanks to: http://www.nexusis.com/solutions/cloud/cloud-consulting/

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 51 of 67

1. Gather Preliminary Information

2. Create a Product Quantity Routing Analysis

3. Group Customers and Sort Materials

4. Sort Product Families by Build Sequence

5. Choose One Value Stream to Begin With

6. Create an Operations Flow Chart

7. Walk the Shop Floor

8. Collect the Data

9. Construct the VSM

10. Summarize the Data and Get the Big Picture

Any process can be subject to a value stream map. Even eating cake;

FIGURE 21: VALUE STREAM MAP FOR BUYING AND EATING CAKE5

By adding the total value add time to the total time (VA+NVA), it is possible to define the total

process efficiency. In the example above, 29%.

5 Images thanks to: http://leadinganswers.typepad.com/leading_answers/2011/09/pmi-acp-value-
stream-mapping.html

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 52 of 67

KANBAN BOARDS

A Kanban board is a useful visualisation and control mechanism for both continuous product

delivery. Starting at the Backlog, and finishing at done, each team will define the intervening

states and workflows that make up the lifecycle (Value Stream Mapping) of their tasks (the

Kanban). This can be as simple, or complex, as required. Teams working on several different

types of tasks may have multiple Kanban Boards, visualising the different states and

workflows for each type. When there is available capacity in a state, it will ‘pull’ any ‘ready’

tasks from the preceding state, thus moving tasks through the workflow.

The visualisation component, or cards, of a Kanban, helps identify the state of each task, when

a task is ready, where there is spare capacity, and if there are any bottlenecks or impediments.

FIGURE 22: EXAMPLE KANBAN BOARD6

Tasks or stories that have identified defects, need rework, or have upstream or downstream

dependencies external to the team that are preventing progress, are marked as ‘blocked’, but

6 Image thanks to: New Zealand Postal Group via Directing the Agile Organisation

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 53 of 67

do not change state. By leaving the task in the current state, the team can see where the

blockage is, and identify where the process should resume once it is resolved. Similarly, by

making all blocked tasks and stories visible on the Kanban board, customers and

management are aware of the issues, and this simplifies any escalation and resolution

processes.

Each task and state should be visible to your teams, customer, and customer representative;

commonly achieved through a physical Kanban board, or integrated virtual dashboard. Each

card describes a single task or story, as well as its estimate, and who is currently working on

it. Keep cards simple, with additional information stored elsewhere (usually the workload

management system). Divide the Kanban board into multiple, labelled columns, each

representing a single state. Then further divide each column in half, the first half being ‘In

Progress’ and the second half being ‘Ready’.

Some versions of Kanban also provide a single ‘Expedite’ track, at the top of the board, for

urgent stories and tasks. There can only ever be one card at a time in this track, and it has the

highest priority, above all other cards. If possible, team members should finish their current

cards before moving onto the expedited card.

FIGURE 23: KANBAN BOARD AND FLOW

Except for the Backlog and Done states, the number of cards allowed at any single time, in

each state, is restricted. Called the Work In Progress (WIP) Limit, it includes both the ‘In

Progress’ and ‘Ready’ Cards in any state, and matches the team’s work capacity. In general,

smaller WIP Limits reduce lead times, help uncover problems in the workflow, and drive

continuous improvement (Kaizen), whilst higher WIP Limits help to absorb variation and

exploit opportunities. Teams using pair programming will have lower WIP Limits, as there is

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 54 of 67

less simultaneous work in progress. By experimenting with various WIP Limits, you can

identify, and resolve, process bottlenecks, adjust the impact of lead time, and create a

predictable and efficient workflow. As a rule, your WIP Limit is too low if you hit bottlenecks

every week, and too high if blockers don’t cause an issue.

FIGURE 24: BOTTLENECKED VS. CLEAR KANBAN BOARDS

Kanban applies a form of Production Levelling to the process flow. This ensures that each

step in the production process delivers at a constant rate and that no step in the production

process produces goods at a faster rate than subsequent steps. Additionally, Kanban uses the

five focusing steps from the Theory of Constraints as the incremental process improvement

model. These are:

1. Identify the system’s constraints: A bottleneck is an extreme example of a constraint.

The slowest part of any process, no matter how smoothly it is working, will limit the

throughput of the rest of the process.

2. Decide how to exploit the system’s constraints: Keep the constrained state focused

and busy at all times, by focusing on value adding work, removing impediments, and

providing high-quality tools and materials.

3. Subordinate everything else to the above decision: All other states should not produce

more than the constraint can process. This means that they have available capacity

that can support the constrained state to focus on its core responsibilities.

4. Elevate the system’s constraints: Once the constrained state has been fully exploited,

the team, or organisation, needs to invest in additional capability, in order to increase

its overall capacity.

5. If, in a previous step, the constraint was broken (e.g. it is no longer a constraint), go

back to step one: At this point, the overall system throughput will have increased, and

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 55 of 67

the system constraint will move to a new point. This encourages continuous

improvement (Kaizen) within each team’s processes.

Note: Each team will go through different iterations of their Kanban board, as their workflow

and work processes improve and evolve. It is not unusual for a productive team, one that has

embraced continuous process improvement, to go through several Kanban board designs a

year. A team that does not change their Kanban board is probably only using it to track work,

not as a method for improvement.

INSPECTION

As well as visualising progress, it is important to measure the time a task or story sits in the

Backlog before being actioned, and the time task or story sits in each state (e.g. the time taken

to move from Active to Testing, and from Testing to Done). The primary measures for this are

Lead Time and Cycle Time. Lead Time and Cycle Time do not measure effort, but the elapsed

time (or duration).

FIGURE 25: LEAD TIME VS CYCLE TIME

Lead Time is defined as the time taken between adding a story to the Backlog, and releasing it

to the customer. Whereas, Cycle Time is defined as the time taken between starting, and

completing, work on a story.

But, numbers alone don’t provide enough useful information to manage your teams. Using

Cumulative Flow Diagrams, and Cycle Time Run Charts, you can represent, and visualise, the

scope of work, planned delivery, and actual delivery of tasks and stories. To ensure full

transparency between your teams and customers, these charts should be available to

everyone even remotely involved with the team.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 56 of 67

CUMULATIVE FLOW DIAGRAMS

A Cumulative Flow Diagram (CFD) visualises the flow of work over elapsed time and the

number of tasks or stories remaining in each state. This is important in verifying the efficient

delivery of work.

FIGURE 26: EXAMPLE CUMULATIVE FLOW DIAGRAM

The CFD tracks each state in your workflow separately, from when a card (or task) enters that

state, to the time the card enters the subsequent state. The vertical distance (y1) in each

charted line shows the number of tasks currently in progress. This distance should never be

greater than the WIP limit for the state. The horizontal distance (x1) shows the time taken for

a task to progress to the next state. The horizontal distance (x2) shows the Average Cycle

Time, the time taken from when a card leaves the Backlog state, until is it done. The final

horizontal distance (x3) shows the Average Lead Time, the time taken from when the card

enters the Backlog, until it is done.

Each line on the Cumulative Flow Diagram should appear smooth; any flat vertical or

horizontal generally indicates impediments, or an uneven flow of work. You can quickly, and

easily, identify bottlenecks, when the area between two bands narrows or, in the worst case,

reduces to zero. Keeping low WIP limits simplifies the identification of bottlenecks, when

analysing Cumulative Flow Diagrams.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 57 of 67

BOTTLENECK

Identified by: A band reducing to
zero.

Identified issue: The
Documentation state is a
bottleneck in the process, and
has starved the Quality Control
state of any work.

Resolution: Improve the delivery
through the bottlenecked state
by exploiting, subordinating, and
elevating the constraint.

FIGURE 27: PROBLEM CFD (STARVED STATE)

POOR FLOW

Identified by: Jagged, widening,
and narrowing bands, between
two or more states.

Identified issue: Caused when
there is not a smooth flow of
work through the system. States
that jump to the maximum WIP,
and back down again, can also
be indicative of bottlenecks, or
other impediments, throughout
the work processes.

Resolution: Identify the cause of
the impediments of bottlenecks,
and remove them, to improve the
flow of work.

FIGURE 28: PROBLEM CFD (POOR FLOW)

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 58 of 67

NO, OR LARGE, WIP LIMIT

Identified by: A large distance
between each band, causing a
false sense of smoothness.

Identified issue: This example
actually shows the same
variation as the ‘Bottleneck’
example above. However, as the
WIP Limit is very large, it is
difficult to identify any
fluctuations in the chart.

Resolution: Reduce the WIP Limit
to an appropriate number.

FIGURE 29: PROBLEM CFD (LARGE WIP)

LONG LEAD TIME

Identified by: A very slow, and
shallow, rise in all states.

Identified issue: There is a long
lead time (and cycle time)
between raising a story, and it
being delivered to the customer.

Resolution: Reduce the WIP
Limit, or reduce the size of the
stories, to improve the speed of
the workflow.

FIGURE 30: PROBLEM CFD (LONG LEAD TIME)

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 59 of 67

PLATEAU

Identified by: Tracking well,
followed by no visible progress
for several days.

Identified issue: The flow of work
has stopped (or dramatically
slowed), usually caused by
critical production issues, large-
scale staff absences (e.g.
Christmas holidays), or waiting
for customer sign off.

Resolution: Identify what is
causing the halt of workflow, and
(if appropriate) resolve the
underlying issue.

FIGURE 31: PROBLEM CFD (PLATEAU)

NOTHING WRONG

Tracking well in terms of
consistent rise, and no major
widening or narrowing of bands.

FIGURE 32: NORMAL CFD

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 60 of 67

CYCLE TIME RUN CHARTS

Teams that measure Cycle Time and Lead Time can visualise these metrics using Cycle Time

Run Charts (sometimes known as statistical process control charts). By looking for trends,

cycles and outliers above expected tolerances, Cycle Time Run Charts will help you to identify

both normal, and uncontrolled, variations in process flow.

FIGURE 33: EXAMPLE RUN CHART

Run Charts plot the Cycle (or Lead) Time of each story, against the long-term average, known

as the centre line. From a continuous improvement perspective, you should aim to improve

your work processes, so the centre line (and thus your average Cycle Time) meets your

customer’s needs.

If you know the expected variance within your process (usually ± three standard deviations),

you can plot the Upper Control Limit (UCL) and Lower Control Limit (LCL). These limits are the

primary mechanism to identify special cause events. This means you should investigate

anything beyond the limits, as they can indicate a process out of control.

It is simple to calculate Cycle Time Run Charts when all stories are of approximately equal

size and effort. However, they can still be effective for stories of varying sizes, but will have

higher Control Limits, and need a larger dataset to calculate a meaningful average.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 61 of 67

PROCESS TREND

Identified by: A run of points that
are continuously increasing or
decreasing.

Identified issue: There is a
progressive trend in the Cycle
Time, implying that something is
gradually shifting over time.

Resolution: If the trend is in the
right direction (usually down), it
may be part of ongoing process
improvement, and your team
should sustain the change.
Otherwise, your team needs to
determine the cause of the
variation, and resolve it.

FIGURE 34: PROBLEM RUN CHART (PROCESS TREND)

PROCESS SHIFT

Identified by: A run of points on a
single side of the centre line.

Identified issue: There is a
sustained shift in Cycle Time,
and may have reached a new
equilibrium.

Resolution: If the shift is in the
right direction (usually down), it
may be part of ongoing process
improvement, and your team
should sustain the change.
Otherwise, your team needs to
determine the cause of the
variation, and resolve it.

FIGURE 35: PROBLEM RUN CHART (PROCESS SHIFT)

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 62 of 67

EXTREME PROCESS VARIATION

Identified by: Points above the
UCL, or below the LCL.

Identified issue: Extreme
variation (special causes) in the
team’s process that may indicate
a process out of control.

Resolution: Identify the cause of
the outliers, and if systemic,
resolve the underlying issues.

FIGURE 36: PROBLEM RUN CHART (EXTREME PROCESS

VARIATION)

NOTHING WRONG

No major variations in process
flow.

FIGURE 37: NORMAL RUN CHART

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 63 of 67

KAIZEN

‘Fall seven times. Stand up eight.’

Old Japanese Proverb

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 64 of 67

All Agile processes are, by their very nature, cyclical, based on the inspect and adapt cycle.

With very little additional effort, this continuous feedback can become ongoing improvement,

and provide the mechanism for organisations to adapt to changing circumstances. This

process of continuous improvement, or Kaizen, leads to a culture of continuous improvement.

There are five main elements to Kaizen:

1. Teamwork: All staff, regardless of rank or status, work together towards the common

goals of your organisation. By extension, all staff, across every team, need to

understand the implications of their work for the rest of the organisation, and share

the responsibility for your organisation’s success.

2. Personal discipline: Staff should be accountable for their actions. Not only for their

core responsibilities, but for all aspects of their work, including quality control, time

management, and their professional relationships with colleagues and customers.

There is a corresponding requirement for organisations to set reasonable standards,

and challenge staff to meet them.

3. Improved morale: Teams share responsibility to build an environment where they feel

empowered, secure, and have a sense of ownership. An organisation with low morale,

or conflict between managers and staff, will suffer from high absenteeism, poor

engagement, and reduced productivity.

4. Quality circles/Retrospective workshop: The retrospective workshops are the primary

forum for teams to suggest improvements to your corporate culture, delivery

processes and management arrangements. Teams should be encouraged to hold

cross-team retrospectives, as a means to share ideas, skills and technology

improvements. Teams also need the authority to experiment with, and implement,

local changes, and the organisation should be quick to respond to any large-scale

suggestions that have implications beyond the team.

5. Suggestions for improvement: All business functions are candidates for Kaizen, and, as

such, each team member has an obligation to participate in the continuous

improvement process. Learning, observing, and putting forward new ideas, especially

in relation to their core responsibilities, will help remove any impediments, and

increase work efficiency.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 65 of 67

Kaizen is a truly continuous process, where teams should be seeking new ways of improving

the business every day. Staff should be encouraged to experiment with different process

changes, to drive continuous improvement.

The regular (weekly or biweekly), retrospective workshop, provides a formal forum for each of

your teams for introspection, and reflection on the processes that support their development.

The goal of this workshop is to suggest improvements, and the focus should be, in order of

importance, people, relationships, process, and tools. The full team should be present for each

retrospective, as they are ultimately responsible, and accountable, for driving process

improvements in their team.

Teams should be free to discuss any relevant topic. During this short meeting, between an

hour to half a day, the team should reflect on the processes since the last Retrospective. This

may include:

 Discuss the processes that worked well, and were effective, or improved, since the last

retrospective. By reflecting on the positive outcomes, the team can identify their

strengths, and use those to overcome specific weaknesses. It is also important, as a

mechanism, to provide positive feedback to the team.

 Discuss the processes that did not work as well as expected, and need improvement.

By reflecting on the negative outcomes, the team can focus their effort on improving in

that area, or make modifications to the process to better play to their strengths.

 Suggest any specific improvements to the processes used within the team. As

mentioned, continuous improvement (Kaizen) is a core concept to Agile, and the team

is responsible for driving most of this change. It is important to ensure that each

improvement is actionable, and assigned an owner.

At the end of the Retrospective, the team should have a list of ‘assigned’ and ‘actionable’

improvements to the management processes.

Each retrospective provides the team with the opportunity to reflect on the time since the last

retrospective, and drive continuous process improvement out of any learning’s since then.

Through this process of Kaizen, the delivery of each story should be more effective, and

enjoyable, than the last.

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 66 of 67

REFERENCES

Lean, Agile & Kanban Processes for Software Projects

Notes:

Lean, Agile & Kanban Processes (cc)-by-sa – Evan Leybourn Page 67 of 67

BOOKS & LINKS

Directing the Agile Organisation – Evan Leybourn

Kanban: Successful Evolutionary Change for Your Technology Business – David J. Anderson

Lean Software Development: An Agile Toolkit - Mary Poppendieck

Agile Estimating and Planning - Mike Cohn

Managing Agile Projects - Kevin J. Aguanno

http://en.wikipedia.org/wiki/Agile_software_development

http://agilemanifesto.org/

http://en.wikipedia.org/wiki/Agile_testing

http://en.wikipedia.org/wiki/Scrum_(development)

http://www.ambysoft.com

http://en.wikipedia.org/wiki/Iterative_and_incremental_development

http://en.wikipedia.org/wiki/Agile_software_development

http://www.agileadvice.com/

http://en.wikipedia.org/wiki/IEEE_829

http://www.ddj.com/architect/201202925?pgno=4

http://www.scrumalliance.org

TOOLS

http://trac.edgewall.org/

http://watir.com

