
SQL for Developers
Student Guide

	[image: C:\Users\Evan\Dropbox\Speaking and Presentations\Training\cc-by-sa.png]
	Advanced SQL Testing with SQL Server by Evan Leybourn is licensed under a Creative Commons Attribution-ShareAlike 3.0 Australia License <http://creativecommons.org/licenses/by-sa/3.0/au/>

Evan Leybourn
evan@theagiledirector.com
Twitter: @eleybourn

[bookmark: _Toc393849615][image: C:\Users\Evan\Dropbox\Writing\directing the agile organisation\Promotion\Book Cover - Directing-the-Agile-Organisation-338x400.png]Other Works by
Evan Leybourn
[bookmark: _Toc393849616]Directing the Agile Organisation – by Evan Leybourn
http://theagiledirector.com/book
· Embrace change and steal a march on your competitors
· Discover the exciting adaptive approach to management
· Become the Agile champion for your organisation

Business systems do not always end up the way that we first plan them. Requirements can change to accommodate a new strategy, a new target or a new competitor. In these circumstances, conventional business management methods often struggle and a different approach is required.
Agile business management is a series of concepts and processes for the day-to-day management of an organisation. As an Agile manager, you need to understand, embody and encourage these concepts. By embracing and shaping change within your organisation you can take advantage of new opportunities and outperform your competition.
Using a combination of first-hand research and in-depth case studies, Directing the Agile Organisation offers a fresh approach to business management, applying Agile processes pioneered In the IT and manufacturing industries.

[bookmark: _Toc393849617]Table of Contents
Other Works by Evan Leybourn	2
Directing the Agile Organisation – by Evan Leybourn	2
Table of Contents	3
1: Introduction	6
Examples Used in This Course	7
2: Phases of Database Design	9
Design Phases	10
Data Modelling	10
Entity-Relationship (ER) Model	12
Entities and Entity Sets	12
Attributes	13
Primary Keys	14
Foreign Keys	15
Relations	16
The Relational Data Model	19
Correctness of Designs	19
3: Database Management Systems	22
Constraint Checking	23
Accessing Data	24
Information Schema	24
Transactions and Concurrency	26
PostgreSQL Command Line Syntax	27
Import/Export in PostgreSQL	27
Database Application Development	27
template0 and template1	28
4: SQL	29
Structured Query Language	30
SQL Data Types (Domains)	31
SQL Operators	31
Numeric Types	32
String manipulation	33
Date and Time Manipulation	35
Aggregations	36
NULL Operators	36
PostgreSQL Specific Data Types	37
User-defined Data Types	37
SQL Data Definition Language	37
Defining a Database Schema	38
Primary Keys in SQL	38
Foreign Keys in SQL	39
Other Attribute Properties	40
Queries	40
Multi-relation SELECT Queries	41
Joins	42
Subqueries	43
Union, Intersection, Difference	44
ORDER BY	45
GROUP BY	45
Data Modification in SQL	45
Data Insertion	46
Data Deletion	46
Updates	47
Changing Tables	47
Indexes	48
Views	48
5: Domains, Stored Procedures and Triggers	50
Programming with SQL	51
Functions	51
PLpgSQL	52
Variable Types	52
Return Types	53
Syntax	53
Overloading	54
Invoking a Function or Stored Procedure	54
Exception Handling	55
Dynamically Generated Queries	56
Triggers	56
PostgreSQL Settings	58
Access Control	59
Configuration	62
Backup and Restore	63

PostgreSQL for Developers

PostgreSQL for Developers 	(cc)-by-sa – Evan Leybourn 	Page 5 of 63
[bookmark: _Toc393849618]1: Introduction
‘On two occasions I have been asked, “Pray, Mr Babbage, if you put into the machine wrong figures, will the right answers come out?” [...] I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.’
Charles Babbage, 1864

This tutorial is aimed at developers (and DBAs) who write applications which connect to a database and who want to take advantage of the more advanced features available. This course focuses on PostgreSQL, but most of the techniques will be applicable to any SQL 2003 compliant database.
[bookmark: _Toc393849619]Examples Used in This Course
All examples in this course use the imaginary “Community Bank” database. The Community Bank database stores information about the staff, customers, accounts, loans and branches used by a hypothetical bank. Branch details consist of the branch name and location. Staff details consist of the name, position within the organisation and what branch that a hypothetical employee of the Community Bank works at.
Customer details stored include the customer name, gender, date of birth and their local branch. Each customer can have one or more accounts – details of banking transactions are stored against accounts.
Community Bank Schema
TABLE Branch {
	name TEXT PRIMARY KEY,
	location TEXT,
	manager INT REFERENCES Staff
		ON DELETE SET NULL
		ON UPDATE CASCADE
}

TABLE Staff {
	staff_id SERIAL,
	given_name TEXT,
	family_name TEXT,
	role TEXT
}

TABLE WorksAt {
	branch_id TEXT REFERENCES Branch
		ON UPDATE CASCADE
		ON DELETE CASCADE,
	staff_id INT REFERENCES Staff
		ON UPDATE CASCADE
		ON DELETE CASCADE,
	PRIMARY KEY (branch_id, staff_id)
}

TABLE Customer {
	customer_id SERIAL PRIMARY KEY,
	given_name TEXT,
	family_name TEXT,
	gender TEXT,
	dob DATE,
	age INT DEFAULT EXTRACT(year from age(dob)),
	branch_id TEXT REFERENCES Branch
		ON UPDATE CASCADE
		ON DELETE CASCADE
}

TABLE Account {
	account_id BIGSERIAL,
	customer_id INT REFERENCES Customer
		ON UPDATE CASCADE
		ON DELETE RESTRICT,
	balance NUMERIC,
	opened_by INT REFERENCES Staff
		ON UPDATE CASCADE
		ON DELETE RESTRICT
}

TABLE Transactions {
	account_id BIGINT REFERENCES Account
		ON UPDATE CASCADE
		ON DELETE CASCADE
	transaction NUMERIC
	date TIMESTAMP
}

[bookmark: _Toc393849620]2: Phases of Database Design
‘So Mr Edison, how did it feel to fail 10,000 times?’
‘Young man, I didn’t fail, I found 9,999 ways that didn’t work’
Thomas Edison, anecdotal (on his invention of the incandescent light)

[bookmark: _Toc393849621]Design Phases
Constructing a database application can be a complicated process, depending on the complexity of the data and business rules involved. Breaking the process down discrete steps into eases this complexity.
Six phases of database development commonly used in the industry are:
1. Requirements analysis to identify data and operations
2. Data modelling
3. Database schema design to design detailed tables and entities
4. Database implementation to create instance of schema
5. Build operations and interface (SQL, stored procedures, GUI)
6. Performance tuning
These map roughly to phases in many common project management approaches; however, they should not be mistaken as such – these are purely from the point of view of the database developer.
[bookmark: _Toc393849622]Data Modelling
What is Data Modelling?
Data modelling is a process to describe the information that should be contained in the database and the relationships between this information. It is also used to describe any constraints and restrictions on the data.
As a banking database, the Community Bank stores information such as customer records and customer accounts. Each account record is related to a customer record, since each customer holds an account.
Constraints that may be placed on the data can include 7 digit customer ids and reasonable dates of birth.

Modelling Outcomes
Agreed user and design requirements focus the modelling process. The aim of which is to create a (semi) formal description of the database structure. There are two types of data models.
1. Logical models which represent the conceptual structure of the data. These models are created from the user requirements.
2. Physical models which represent the physical layout of data.
Data Modelling Considerations
Before beginning the modelling process database requirements should always be established. Failure to establish requirements can lead designs to suffer from scope creep, and otherwise efficient and logical designs can become bloated and poor.
Initial requirements specifications are typically vague. Try to expand and clarify all issues before beginning the modelling process.
During the modelling process designs will always evolve as user requirements and developer understanding change. This should always be expected and planned for.
When attempting to understand the data being modelled, key words in the requirements can often give clues for the relationship between data. As a general rule, nouns suggest data and verbs suggest relationships.
Don't confuse operations with relationships.
Operation: Jenny opens an account
Relationship: The account is owned by Jenny.

Try and consider all potential scenarios that could occur, not just actual or expected data. By modelling cases for incorrect, misleading or fraudulent data these issues can often be resolved before they become an issue.

[bookmark: _Toc393849623]Entity-Relationship (ER) Model
The ER Model (or ER diagram) is the most common modelling method for database design. The ER model represents the data as a collection of interrelated entities. It is a notation for describing entities and their relationships.
It is also very simple to understand, representing the information in an abstract and graphical form, which allows clients and developers to both use the model to understand the design.
This modelling method has existed for almost 30 years. The form of Entity Relationship Diagrams has never been standardised; though some loose attempts have been made (the class diagram in Unified Modelling Language, for example, and the ICAM Definition Languages). As a result, many variations do (unfortunately) exist. Common variations involve relationship cardinalities (which will be covered later) and Object Oriented (OO) extensions (which won't).
ER diagrams are a graphical tool for data modelling. An ER diagram consists of:
· [image:]The definitions of each entity set
· The definitions of each relationship set
· The attributes associated with each entity set and
· The connections between entity and relationship sets
[bookmark: _Toc393849624]Entities and Entity Sets
Each entity is described by a collection of attributes that describe it.
The customer table.
	Family Name:	Smith
	Given Names: 	Jenny
	DOB: 		01-Jan-1970
	Gender: 	Female

The branch table.
	Name: 	Canberra City
	Location: 	Canberra

An entity set is a collection of entities with the same attributes. It should be noted that 99% of the time we say "entity" when we mean "entity set" and we say "relationship" when we mean "relationship set".
[image:]
[bookmark: _Toc393849625]Attributes
Each attribute in an ER diagram has a name (which appears on the ER diagram) and is associated with an entity or relationship set. Attributes are assigned types (domains) which constrain the data allowed within the attribute.

Null Values
Attributes may contain a null (or empty) value to indicate that the attribute is not relevant, or that the value of the attribute is unknown for a particular entity.
Renae is under 18 years old and will not have a credit card number. We also do not know her mobile phone number, so both of these values will be NULL.
Derived Attributes
Derived attributes contain values that are calculated from other attributes.
A person's age is be calculated by subtracting the year of their birth from the current year.
Most databases have a large number of available functions for each data type which will be discussed later in this course.
[bookmark: _Toc393849626]Primary Keys
In order to identify an individual entity within an entity set, each entity must contain an attribute which is unique, or a series of attributes which, in combination, are unique. Sometimes the nature of the data enforces uniqueness across one or more attributes within an entity, and this/these can be used as a primary key. Unless there a very good reasons for the contrary, all tables must contain a primary key.
Another approach to ensuring this uniqueness is to create a new attribute which contains a guaranteed unique value for each entity in the entity set, and using this as the primary key. This approach is commonly used.
The Community Bank branch entity uses the name of each Branch as a Primary Key, as no two branches can have identical names.
However, as no attribute or combination of attributes in the Customer table can be guaranteed to always be unique, a unique customer id is given to each row.

If the key is made from more than one attribute it is called a composite key. Keys are indicated in ER diagrams by underlining the key attributes; it is also common to denote a non-composite Primary Key with the symbol (PK).
[image:]
[bookmark: _Toc393849627]Foreign Keys
Given that a primary key is one or more attributes identifying a specific entity in an entity set, a foreign key is one or more attributes identifying an entity in another entity set. Foreign keys are critical in relational databases, they link individual relations into a cohesive database structure.
They are also very important when querying data as they provide the basis for connecting individual relations to assemble the results.
A customer’s address is stored in a special Address table. There are Foreign Keys linking the Person table to the Address table.
[image:]
[bookmark: _Toc393849628]Relations
A relationship is an association between two entities. Similarly, a relationship set is a collection of relationships of the same type.
Customer(9876) holds Account(12345)
Customer(9877) holds Account(12346)
Customer(9878) holds Account(12347)
Customer(9878) also holds Account(12348)
etc.

Cardinalities
Cardinalities describe the number of entities that a given entity can be associated with through a relationship.
One-to-One (1-1): Each X is associated with at most one Y and each Y is associated with at most one X.
Every branch has one staff member as manager, and a staff member can only be a manager for one branch.

One-to-Many (1-M): each X is associated with zero or more Y, each Y is associated with at most one Y.
A customer can hold many accounts, but an account belongs to only one customer.

Many-to-Many (M-N): each X is associated with zero or more Y, each Y is associated with zero or more X. M-N relationships usually degrade into a weak entity between the two main entities. This will be covered later.
A staff member can work at many branches, and a branch has many staff working there.

Foreign Key Participation
Foreign Keys can be NULL, indicating that though a relationship is possible for a generalised entity set, a specific entity does not have one. This means that the level of participation in a relationship is another type of constraint. Participation can be total or partial;
Total: Every X must have at least 1 Y
A customer must have an account to have a customer record at the Bank.

Partial: Every X can have 0 or more Y
An account may have no transactions on record, such as if it has just been opened.

Weak Entity Sets
Weak entities exist only because of a relationship between two or more entities. They only contain the keys of the “strong” entities and attributes directly relating to the relationship. They do not have a separate primary key.
Staff members who work at a branch is a M-N relationship. We cannot store the information about the relationship in either the Staff or Branch tables, so a WorksAt table (containing the primary keys from the Staff table, matched against the relevant primary keys of the Branch table) is created to store this data.
Likewise if a staff member does not work at a branch, there is no need to store any information about it.

We can form a primary key for a weak entity by taking a combination of the primary keys of the associated strong entities. In ER diagrams weak entities are denoted by double-boxes and discriminators are denoted by dotted underline.
[image:][image:]

[bookmark: _Toc393849629]The Relational Data Model
The relational data model has existed for over 30 years and has created numerous database design methodologies. It has also helped to develop the standard database access language, SQL.
The relational model is a mathematical theory; it has no "standard" and is based heavily on set theory. There are thus two kinds of terminology in use:
· Mathematical: relation, tuple, attribute, etc
· Physical: table, record, field/column, etc
[bookmark: _Toc393849630]Correctness of Designs
In general, there is no single "best" design for any given application. If a model contains all available data, relations and constraints it can be considered 'correct'. However, we may describe a design as incorrect or inadequate if it:
· Omits some information that is meant to be modelled
· Contains redundant information, though this may be unavoidable
· Leads to an inefficient implementation
· Violates the rules of the chosen modelling method
For example; an initial data model did not store the balance of a customer’s accounts. It also stored the customer name in both the Customer and Account tables. And because it did not store the account balance, any balance check required it to be calculated from all previous transactions.
[image:]
A “correct” ER Diagram
[image:]
An “incorrect” ER Diagram. Some of the issues within this ER diagram include;
· Meaningless tablename (t1)
· Incorrect type (Gender as date & balance as integer)
· Incorrect cardinality (1-M on the wrong side) between t1 & Accounts
· M-N relationship without weak entity between Staff & Branches
· Accounts entity without primary key
· Customer does not have a unique primary key
· Branches foreign key is not labelled
· Unclear label in Customer table (first name / surname rather than given / family)
[bookmark: _Toc393849631]3: Database Management Systems

 ‘It is always wise to look ahead, but difficult to look further than you can see.’
Winston Churchill, ~1960

[bookmark: _Toc393849632]Constraint Checking
When a process creates, changes or deletes a record, the DBMS checks that the new values do not break the constraints against each attribute. If any constraint is not met, the operation is cancelled and any prior changes in the operation are rolled back.
Type Checking
Each attribute in a database is given a type (or domain). New and updated values must be of the same type. No checking is done for deleted rows.
A person's date of birth is not allowed in the age field. Likewise the date of birth must be a valid date. If this constraint is not met, the row will not be inserted or updated
Primary Key Checks
As each row in the database must have a unique primary key, new and updated values must not occur elsewhere in the entity. No checking is done for deleted rows.
No two branches are allowed to have the same name.
Referential Integrity Checks
For attributes that are foreign keys, any new or updated values must exist in the parent table. If an attempt is made to update or delete a record in a parent table then the RDBMS may:
· Abort the change and the user must find all referring entities and either remove each one manually or change their foreign keys to an acceptable value.
· Remove or update all referring entities automatically.
ON DELETE/UPDATE CASCADE
· Set foreign key attributes to NULL in all referring entities.
ON DELETE/UPDATE SET NULL

Customer records are considered very important data, much more so than branch data. So if the branch a customer belongs to is deleted from the database, the branch_id attribute will be set to NULL.

branch_id INT REFERENCES Branch ON DELETE SET NULL
However if that same branch is deleted, the information describing staff working at a branch is no longer important and can be deleted.

branch_id INT REFERENCES Branch ON DELETE CASCADE
[bookmark: _Toc393849633]Accessing Data
All modern DBMSs provide access to the data via SQL. And while each DBMS has its own dialect, SQL92 is the current standard.
Most DBMS can directly SQL entered via an interactive shell. This interface is useful for administrative and debugging purposes. Although, users would never be expected to use this shell.
APIs included in most programming languages, (Java, C, PHP, Python, etc) allow developers to connect to and communicate with the DBMS from within their application. Users then use the front-end application and remain blissfully ignorant of SQL or the database backend.
Many DBMSs also provides various kinds of extensibility of the database such as views, stored procedures and triggers.
[bookmark: _Toc393849634]Information Schema
DBMSs also provides access to database metadata, or the catalog. Metadata is typically presented as collection of tables that can be queried as you would a standard entity. This is available through the through the Information_Schema tables.
There are a variety of uses for this metadata, ranging from the simple to the complex. Many applications use this metadata to do analysis of the data stored, and provide statistics and other relevant information.
Software has also been written that takes advantage of the database metadata to create simple CRUD (create, retrieve, update, delete) applications that generate a user interface on the fly from nothing more than the database metadata.
INFORMATION_SCHEMA.ADMINISTRABLE_ROLE_AUTHORIZATIONS
INFORMATION_SCHEMA.APPLICABLE_ROLES
INFORMATION_SCHEMA.ATTRIBUTES
INFORMATION_SCHEMA.CHECK_CONSTRAINT_ROUTINE_USAGE
INFORMATION_SCHEMA.CHECK_CONSTRAINTS
INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE
INFORMATION_SCHEMA.COLUMN_PRIVILEGES
INFORMATION_SCHEMA.COLUMNS
INFORMATION_SCHEMA.COLUMN_UDT_USAGE
INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE
INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE
INFORMATION_SCHEMA.DATA_TYPE_PRIVILEGES
INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS
INFORMATION_SCHEMA.DOMAINS
INFORMATION_SCHEMA.DOMAIN_UDT_USAGE
INFORMATION_SCHEMA.ELEMENT_TYPES
INFORMATION_SCHEMA.ENABLED_ROLES
INFORMATION_SCHEMA.INFORMATION_SCHEMA_CATALOG_NAME
INFORMATION_SCHEMA.KEY_COLUMN_USAGE
INFORMATION_SCHEMA.PARAMETERS
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS
INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS
INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS
INFORMATION_SCHEMA.ROLE_TABLE_GRANTS
INFORMATION_SCHEMA.ROLE_USAGE_GRANTS
INFORMATION_SCHEMA.ROUTINE_PRIVILEGES
INFORMATION_SCHEMA.ROUTINES
INFORMATION_SCHEMA.SCHEMATA
INFORMATION_SCHEMA.SEQUENCES
INFORMATION_SCHEMA.TABLE_CONSTRAINTS
INFORMATION_SCHEMA.TABLE_PRIVILEGES
INFORMATION_SCHEMA.TABLES
INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS
INFORMATION_SCHEMA.TRIGGERS
INFORMATION_SCHEMA.USAGE_PRIVILEGES
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE
INFORMATION_SCHEMA.VIEW_ROUTINE_USAGE
INFORMATION_SCHEMA.VIEWS
INFORMATION_SCHEMA.VIEW_TABLE_USAGE

[bookmark: _Toc393849635]Transactions and Concurrency
Often in application programming a single application-level operation or transaction involves mutliple DBMS-level operations. To faithfully represent the application-level operation, either all DBMS-level operations must complete or all DBMS-level operations must fail. If the transaction fails partway, any completed operations must be undone. The DBMS should enforce this automatically.
When a customer withdraws money from their account, a financial transaction record is created recording this information. Once recorded the balance of the customer’s account is reduced by the withdrawal amount. If the either of these processes fail, the other process needs to be aborted to ensure all records are correct (Data Integrity).

START TRANSACTION;
UPDATE Customer SET <FAILS>;
ROLLBACK;

START TRANSACTION;
UPDATE Customer SET <Success>;
COMMIT;
Multi-Version Concurrency Control
PostgreSQL uses Multiversion Concurrency Control to ensure that users reading data do not need to wait for users writing data to finish, and that the reads will always be accurate and complete.
When a user sends a SELECT query, PostgreSQL displays a snapshot, or version, of all the data that was committed before the query began. Any data updates or inserts that are part of open transactions or were committed after the query began will not be displayed.

[bookmark: _Toc393849636]PostgreSQL Command Line Syntax
Creating (and loading) a Database
$ createdb mydb
$ psql mydb
...
mydb=# \i schema.sql
...
- or -
$ createdb mydb
$ psql mydb < schema.sql
[bookmark: _Toc393849637]Import/Export in PostgreSQL
The entire contents of a database may be dumped to disk.
$ pg_dump mydb > mydb.dump

This will dump all the definitions needed to re-create entire database if required. It will dump the table definitions (create table SQL), all constraints, including primary and foreign keys, all the data from all tables and the stored procedures, triggers, etc.
[bookmark: _Toc393849638]Database Application Development
Each programming language will have different syntax to connect to and communicate with a database. However most follow a fairly similar process.
-- establish connection to DBMS
db = dbConnect("dbname=X user=Y 	passwd=Z");
query = "SELECT a,b FROM R,S WHERE ... ";
-- invoke query and return result set
results = dbQuery(db, query);
-- for each tuple in result set
while (tuple = dbNext(results)) {
	-- do something
}
dbClose(results);

The application connects to the database with a username and password which returns a connection (handle) to the database. This connection is used to send and receive data.
A query is then composed and sent through the connection to the database which returns a database result set. This result set can then be iterated through to get each row of data.
[bookmark: _Toc393849639]template0 and template1
When a database is created, PostgreSQL actually copies an existing database; Template1. This means that any changes that you make to template1 are available within any new database that you create. An popular example is creating standard audit tables and functions which need to be available within every database on the system.
Template0 should never be modified, it is the pristine database that you can use to create new pristine databases. To use template0 (or in-fact any other database)
createdb -T template0 dbname

[bookmark: _Toc393849640]4: SQL
‘Make everything as simple as possible, but not simpler.’
Albert Einstein (paraphrased), 1933

[bookmark: _Toc393849641]Structured Query Language
SQL stands for “Structured Query Language“ which is sometimes called "sequel".
SQL is an ANSI/ISO standard language for querying and manipulating relational databases. It is designed to be a "human readable" language comprising data definition facilities, database modification operations, relational algebra operations and aggregation operations.
DBMSs typically implement the SQL-92 standard (aka SQL92). Unfortunately, they usually only implement a (large) subset of the standard and often extend the standard in various "useful" ways.
SQL Syntax
SQL identifiers and keywords are case insensitive though as a general rule write keywords (SELECT, WHERE, CREATE) in upper case, relation names (Customer, Account) with an initial upper-case letter and write attribute names (balance, dob) in all lower-case. Multi word attribute names should be seperated with an underscore (customer_id, family_name).
SQL Keywords
There are 225 reserved words in SQL-92. A categorised list of the more frequently used keywords:
	Querying
	Defining
	Changing

	SELECT
	CREATE
	INSERT

	FROM
	TABLE
	INTO

	WHERE
	VIEW
	VALUES

	GROUP
	INDEX
	UPDATE

	HAVING
	COLUMN
	SET

	ORDER BY
	DATABASE
	DELETE

	DESC
	KEY
	DROP

	ASC
	PRIMARY
	ALTER

	EXISTS
	FOREIGN
	BEGIN

	IS
	REFERENCES
	END

	NOT
	CONSTRAINT
	

	NULL
	CHECK
	

	IN
	UNIQUE
	

	DISTINCT
	
	

	AS
	
	

	AND
	
	

	OR
	
	

	BETWEEN
	
	

	ROLLBACK
	
	

	CASCADE
	
	

	COMMIT
	
	

	JOIN
	
	

	LIKE
	
	

[bookmark: _Toc393849642]SQL Data Types (Domains)
SQL supports a small set of useful built-in data types:
· Text string: “Hello World!”
· Numbers (Integers, Real): 123, 3.14
· Dates and Times: 13/05/1981, 10:00
· Boolean (Bit): 0, 1 (t, f)
· Bit-string or binary data
Basic type (domain) checking is performed automatically by the DBMS. The NULL value is treated as a member of all data types.
Constraints can be used to enforce more complex domain membership conditions depending on the requirements of the application.
[bookmark: _Toc393849643]SQL Operators
When comparing data a series of default comparison operators are defined on all data types.
· Less Than (<): 1 < 2
· Greater Than (>): 2 > 1
· Less Than or Equal To (<=): 2 <= 2
· Greater Than or Equal To (>=): 2 >= 2
· Equals (=): “Hello” = “Hello”
· Not Equals (!= or <>): 10:00 != 11:00
· Test for NULL value (IS)
· Test for false NULL value (IS NOT)
A common error that needs to be tested for is the use of:
= NULL

This is incorrect syntax and will lead to unexpected results. The correct syntax is:
IS NULL / IS NOT NULL

Boolean operators AND, OR, NOT are available within WHERE expressions to combine results of comparisons. Most data types also have type-specific operations available (e.g. arithmetic for numbers).
[bookmark: _Toc393849644]Numeric Types
There are different number types available in PostgreSQL. Each is appropriate for different applications.
· INTEGER (or INT), BIGINT, SMALLINT: 4/8/2 byte whole numbers.
· REAL, DOUBLE PRECISION: 4/8 byte floating point (decimal) numbers.
· NUMERIC: Exact decimal numbers. Slow but accurate, best used for currency calculations.
· SERIAL, BIGSERIAL: 4/8 byte automatically incrementing integers.
Common Functions
+ - * /: The standard operations
1+1 = 2
1-1 = 0
2*2 = 4
4/2 = 2

sin(x), cos(x), tan(x) etc: Trigonometric
sin(90) = 0.893996663600558

abs(x): The absolute value of x
abs(-1) = 1

ceiling(x): The small integer above x
ceil(4.5) = 5

floor(x): The largest integer below x
floor(4.5) = 4

power(x, y): x to the power of y
power(2, 3) = 8

sqrt(x): The square root of x
sqrt(4) = 2

random(): Between 0.0 and 1.0
random() = 0.341076350305229
[bookmark: _Toc393849645]String manipulation
There are three different text or string types available in SQL Server. Each is appropriate for different applications.
· CHAR(n): Fixed length text padding with spaces to n characters.
· VARCHAR(n): Variable length text with a predefined limit n.
· TEXT: Variable length text of (effectively) unlimited length.
Common functions
str1 || str2: Concatenate two strings
'Jenny' || ' ' || 'Smith' = 'Jenny Smith'

LENGTH(str): Return length of string
LENGTH('Tobias') = 6

SUBSTR(str,start,count): Extract characters from within a string
SUBSTR('Canberra', 1, 3) = 'Can'

LOWER(str): Convert to lowercase
LOWER('NSW') = 'nsw'

UPPER(str): Convert to uppercase
UPPER('nsw') = 'NSW'

POSITION(substring IN string): Location of the substring within the string
POSITION(' ' IN 'Tobias Snoad') = 7

MD5(str): Return the md5 hash of the string. Useful for passwords.
MD5('Canberra') = '85b1713e4b1a271d545a8db229fe262f'

str (i)LIKE pattern: Matches string to pattern (not regular expressions). “%” matches anything and “_” matches any single character. ILIKE is used for case insensitive searches
--Name begins with Je
first_name LIKE 'Je%'

--Name has 'i' as 2nd letter
first_name LIKE '_e%'

--Name contains an E or e anywhere
first_name ILIKE '%e%'

[bookmark: _Toc393849646]Date and Time Manipulation
There are six different date and time types available in SQL Server. Each is appropriate for different applications.
· TIMESTAMP WITHOUT TIME ZONE (Default): A date + time data type
· TIMESTAMP WITH TIME ZONE: A date + time data type with an additional timezone parameter
· INTERVAL: An interval data type, e.g. 3 seconds, 12 days 4 minutes 2 seconds
· DATE: A date data type
· TIME WITHOUT TIME ZONE (Default): A time data type
· TIME WITH TIME ZONE A time data type with an additional timezone parameter
Special Types
epoch	date, timestamp		1970-01-01 00:00:00+00 (Unix time zero)
infinity	timestamp		later than all other time stamps
-infinity	timestamp		earlier than all other time stamps
now		date, time, timestamp	current transaction's start time
today	date, timestamp		midnight today
tomorrow	date, timestamp	midnight tomorrow
yesterday	date, timestamp	midnight yesterday
allballs	time			00:00:00.00 UTC
Common functions
AGE(timestamp, timestamp): Subtract arguments, and produce the “age” of the result. The seconds timestamp can be skipped and it will default to now.
AGE('2001-04-10', '1957-06-13') = 43 years 9 mons 27 days

CURRENT_DATE: Get the current date
CURRENT_TIME: Get the current time
DATE_TRUNC(text, timestamp): Truncate to specified precision
date_trunc('hour', '2001-02-16 20:38:40')	 = 2001-02-16 20:00:00

EXTRACT(field from timestamp): Returns the subfield from the timestamp.
extract(hour from '2001-02-16 20:38:40')	= 20

EXTRACT(field from interval): Returns the subfield from the interval.
extract(month from interval '2 years 3 months')	 = 3

LOCALTIME: Current time of day
[bookmark: _Toc393849647]Aggregations
Aggregations can apply to a column of numbers in a relation:
· COUNT(col): Number of rows in the column. Unlike the other aggregation functions, count can apply to any data type.
· Sum, average, maximum and minimum can only be used with numeric data types.
· SUM(col): Sum of all values in the column. Can only be used with numeric types.
· AVG(col): Average of the values in the column.
· MIN/MAX(attr): Min/max of values for attr
[bookmark: _Toc393849648]NULL Operators
A NULL value in any arithmetic operation always yields NULL.
3 + NULL = NULL
1 / NULL = NULL

NULL in aggregations is ignored (treated as unknown)
sum(1,2,3,4,5,6) = 21
sum(1,2,NULL,4,NULL,6) = 13
avg(1,2,3,4,5) = 3
avg(NULL,2,NULL,4) = 3

[bookmark: _Toc393849649]PostgreSQL Specific Data Types
PostgreSQL supports several non-standard data types to extend the SQL standard. Other DBMS systems may not have these types.
· A generic text string data: TEXT
· Arbitrary binary data: BYTEA
· Geometric data types: POINT, CIRCLE, POLYGON
· PostgreSQL also extends the relational model so that a single attribute can contain an array/matrix of values: INT[0,1,2,3,4,5]
[bookmark: _Toc393849650]User-defined Data Types
SQL has several basic data types which are suitable for most applications, e.g. INT, CHAR, BOOL etc. However sometimes these are not enough and additional data types are required. These can be created through the CREATE DOMAIN command. (Not to be confused with the CREATE TYPE command).
CREATE DOMAIN DomainName [AS] DataType
[DEFAULT expression] [CONSTRAINT ConstrName constraint]

Example:
CREATE DOMAIN dob AS DATE
CHECK (extract(YEAR FROM age(VALUE)) > 12);
[bookmark: _Toc393849651]SQL Data Definition Language
SQL is normally considered to be a query language. However, it also has a data definition sub-language (DDL) for describing database schemas.
Each database description contains the names of all the tables and the names and types for each column. The description also describes all the various types of constraints, such as primary and foreign keys, unique and not null.

[bookmark: _Toc393849652]Defining a Database Schema
Creating Tables
Relations (tables) are described using:
CREATE TABLE RelName (
 attribute1 type constraints,
 attribute2 type constraints,
 ...
 table-level constraints, ...
)

Community Bank Branch Table
CREATE TABLE Branch (
 name VARCHAR(15),
 location VARCHAR(99) UNIQUE NOT NULL
)

This will define the table schema and create an empty instance of the table. Constraints can include details about primary keys, foreign keys, default values, and constraints on attribute values.
Deleting Tables
Tables are removed via
DROP TABLE RelName;
[bookmark: _Toc393849653]Primary Keys in SQL
If the primary key is a single attribute, then it can be declared inline.
CREATE TABLE Accounts (
 account_id SERIAL PRIMARY KEY,
 ...
)

Otherwise if the primary key is built from multiple attributes, then it can be declared with the table constraints
CREATE TABLE WorksAt {
	branchid TEXT REFERENCES Branch
	staffid INT REFERENCES Staff
	CONSTRAINT workspk PRIMARY KEY
		(branchid, staffid)
}
[bookmark: _Toc393849654]Foreign Keys in SQL
Declaring foreign keys in the SQL assures referential integrity when creating, updating or deleting data.
Like the primary keys, if the foreign key is a single attribute it can be declared inline.
customer_id INT REFERENCES Customer(customerid)
customer_id INT REFERENCES Customer

If the foreign key is built from several attributes, it can be specified in table constraints.
FOREIGN KEY (customer, name)
	REFERENCES Customer(customer, name)

Behaviour
The default behaviour when a referential conflict is identified it to cancel the operation. Other behaviours include setting the referring attribute to NULL, or cascading the change.
Cascading changes will delete all referring rows when a parent row is deleted, and change all the referring attributes to the new value when a parent key is updated.
customer_id INT REFERENCES Customer
	ON DELETE RESTRICT
customer_id INT REFERENCES Customer
	ON DELETE CASCADE
customer_id INT REFERENCES Customer
	ON DELETE SET NULL
[bookmark: _Toc393849655]Other Attribute Properties
Null
To specify that an attribute cannot be null or have an empty value.
location VARCHAR(50) NOT NULL
Unique
To specify that an attribute must have a unique value. This actually creates a UNIQUE index against this column.
location VARCHAR(50) UNIQUE

Primary keys are automatically UNIQUE and NOT NULL.
Defaults
The default value of an attribute will be assigned if no value is supplied during an insert.
age INT DEFAULT EXTRACT(year from 	age(dob))
Constraints
To specify an arbitary constraint against any attribute using the check syntax. This condition can be arbitrarily complex, and may even involve other attributes, relations and SELECT queries.
gender CHAR CHECK (gender IN ('M','F'))
[bookmark: _Toc393849656]Queries
An SQL query is a declarative program that retrieves data from a database. The most common kind of SQL statement is the SELECT query:
SELECT attributes FROM relations WHERE condition
SELECT * FROM Customer WHERE gender= 'M';

The conditions applied to the query can be an arbitrarily complex boolean-valued expression using the operators mentioned previously.

Semantics of SELECT
It is possible to select all the columns from one or more tables. The symbol * denotes a list of all attributes.
SELECT * FROM Branch;

To alias a column in the output results use the AS syntax.
SELECT family_name AS customer FROM Customer;

The values of the results can be modified through the use of SQL functions and expressions.
SELECT balance*100 AS cents FROM Account;
[bookmark: _Toc393849657]Multi-relation SELECT Queries
So far we have only seen a query returning the results from a single table. Often we want the results from multiple tables, which have been joined together. The syntax for this is similar to simple SELECT queries:
SELECT attributes FROM relation1, relation2, ... WHERE condition

The main between the single relation and multi-relation query is the FROM clause contains a list of relations, and the conditions includes cross-relation (join) conditions.
SELECT *
	FROM Customer, Account
	WHERE customer.customer_id = 	account.customer_id

Notice that each attribute is prefixed with the relation it belongs to. This defines where the attribute belongs and how to join the entities together. The relation.attribute convention doesn't help if we happen to use the same relation twice in a SELECT.
To handle this, we need to define new names for each "instance" of the relation in the FROM clause.

SELECT *
	FROM Account a1, Account a2
	WHERE a1.customer_id = a2.customer_id
		AND a1.account_id != a2.account_id

This can also be used to shorten otherwise lengthy queries.
SELECT *
	FROM Customer c, Account a
	WHERE c.customer_id = a.customer_id
[bookmark: _Toc393849658]Joins
Previously we looked at implicit joins, where two or more relations are joined through the conditions (WHERE clause). More complex joins require the query to contain an explicit join statement.
JOIN ON
This is the most general form of join. The ON clause is in the same boolean expression form as the WHERE conditions. All other joins assume identical names between the two joined relations (ie a.customer_id, c.customer_id). If the foreign key in the relation is named differently to the parent table you must use this join.
SELECT *
	FROM Customer c JOIN Account a ON c.customer_id=a.customer_id 	WHERE ...
JOIN USING
This takes a comma separated list of column names, which the two relations must have in common and equates each of the columns together.
SELECT * from Customer c JOIN Account a USING (customerid) WHERE ...
NATURAL JOIN
This is a shorthand version of JOIN USING which joins all similarly named tables.
SELECT * from Customer c NATURAL JOIN Account a WHERE ...

OUTER JOIN
Joins only produces results where there are matching values in both of the relations involved in the join. Often, it is useful to produce results for all tuples in one or both relations, even if it has no matches in the other.
SELECT *
FROM Account a OUTER JOIN Transaction t
USING (account_id)
WHERE ...

This will return a list of all accounts with transactions, as well as all new accounts which do not have any transactions. Those accounts without transactions will have NULL values in the transaction fields in the results.
Outer joins may use the ON, USING or NATURAL syntax.
[LEFT | RIGHT | FULL] OUTER JOIN
The table which returns NULL values is by default the first (or leftmost) table in the SQL query. This can be overridden by specifying RIGHT or FULL.
SELECT *
	FROM Customer c RIGHT OUTER JOIN Branch b
	WHERE ...

This will return a list of all customers with branches, as well as all branches that do not have any customers. Likewise;
SELECT *
	FROM Customer c FULL OUTER JOIN Branch b
	WHERE ...

This will return a list of all customers with branches, all branches who do not have any customers, and all customers who do not have any branches.
[bookmark: _Toc393849659]Subqueries
The result of a SELECT query can be used in the WHERE clause of another query. In the simplest case the subquery returns a single result. The query can then treat the result as a single constant value and use in expressions.
SELECT *
	FROM Account
	WHERE balance = (SELECT max(balance) FROM Account);

It is also possible to return multiple results from your subquery. This can be treated as a list of values in the main query using the IN function.
SELECT *
	FROM Account
	WHERE customer_id IN (SELECT customer_id
						FROM Customer
						WHERE gender='F');
[bookmark: _Toc393849660]Union, Intersection, Difference
SQL implements the standard set operations, union, itersection and difference on multiple queries.
SELECT ... UNION SELECT ...

A union will return the set of results from each query as one result. An intersection will return the set of results that exist only in both queries. And except will return the set of results in the first query that do not exist in the second.
Each SELECT statement must return the same number of attributes, and each corresponding attribute must be of the same type.
SELECT min(date), transaction FROM Transaction GROUP BY transaction
UNION
SELECT max(date), transaction FROM Transaction GROUP BY transaction

SELECT date, transaction FROM Transaction
EXCEPT
SELECT max(date), transaction FROM Transaction GROUP BY transaction

[bookmark: _Toc393849661]ORDER BY

SQL does not guarantee that the results of a given query will be in any particular order. The only way to guarentee this is to re-order the results in the order by statement. The order by statement is a comma separated list of attributes from the SELECT statement.
SELECT *
	FROM Customer
	ORDER BY family_name, given_name ASC;

By default it will sort in ascending order, but this can be overridden with the keywords DESC (descending) or ASC (ascending).
[bookmark: _Toc393849662]GROUP BY
The GROUP BY statement partitions the results into groups according to a given list of attributes. This is most commonly used to treat each group separately in computing aggregations such as COUNT() or MAX().
SELECT count(*), gender
	FROM Customer 	
	GROUP BY gender;

If the results include aggregate, and non-aggregate values, every non-aggregate value must appear in the GROUP-BY clause.
[bookmark: _Toc393849663]Data Modification in SQL
SQL provides mechanisms for modifying data within tables. Constraint checking is applied automatically on any change. Unlike selection, you cannot perform these operations across multiple tables.
· INSERT: Add a new row into a table.
· DELETE: Remove rows from a table based on a given condition.
· UPDATE: Modify values in exiting tuples based on a given condition.
SQL also provides mechanisms for modifying table meta-data:
· CREATE TABLE: Create a new empty table
· ALTER TABLE: Change properties of existing table
· DROP TABLE: Remove table from database
Similar operations are available on other kinds of database objects.
· CREATE VIEW, FUNCTION, RULE, ...
· DROP VIEW, FUNCTION, RULE, ...
Other objects do not have any UPDATE capability, for these use DROP and then CREATE. However, this may lose custom permissions on the object.
[bookmark: _Toc393849664]Data Insertion
Accomplished via the INSERT operation.
INSERT INTO Customer VALUES ('1', 'Cruz', 'Tobias' ,...);

The values to insert must be supplied for all attributes of the table in same order as appear in the CREATE TABLE statement. To supply the details in a different order, or to skip attributes you can specify which fields to insert into.
INSERT INTO Customer (family_name, given_name, gender) VALUES ('Cruz', 'Tobias', 'M');

Unspecified attributes are assigned NULL or, if applicable, a default value.
Insertion from Queries
It is possible to use the result of a query to insert data. This can also allow you to insert multiple rows in a single operation.
INSERT INTO AccountTmp SELECT * FROM Account;
[bookmark: _Toc393849665]Data Deletion
Accomplished via the DELETE operation. This will remove all rows from the table that satisfy a given condition.
DELETE FROM Customer WHERE family_name=’Cruz’;

If you do not specify a where clause it will delete all rows from the table, use with care.
DELETE FROM Customer;
[bookmark: _Toc393849666]Updates
An update allows you to modify the values in a row or rows in a table that satisfy a given condition.
UPDATE Account SET balance='1234.00' WHERE customer_id='12345';

Each row in the table that satisfies the condition has the assignments applied to it. So it is possible to update every row in a table by neglecting the conditions. Assignments may assign constant values to attributes.
UPDATE Account SET balance='1234.00' WHERE customer_id='12345';

Or use existing values in the tuple to compute new values,
UPDATE Account SET balance=balance+'10.00' WHERE customer_id='12345';
[bookmark: _Toc393849667]Changing Tables
Once a table has been created through the CREATE TABLE operation, modifications to the table structure can be made using the ALTER TABLE operation.
ALTER TABLE Customer ...

Some possible modifications are:
Add a new column or attribute. This will set all values to NULL unless a default is given.
ALTER TABLE Customer ADD COLUMN salutation text;

Change the type of a column.
ALTER TABLE Customer ALTER COLUMN salutation TYPE varchar(5);

Change properties of an existing attribute such as add new constraints.
ALTER TABLE Customer ALTER COLUMN salutation SET DEFAULT 'Mr';

ALTER TABLE Customer ALTER COLUMN salutation SET NOT NULL;

Rename a column
ALTER TABLE Customer RENAME COLUMN salutation TO title;

Remove a column
ALTER TABLE Customer DROP COLUMN title;
[bookmark: _Toc393849668]Indexes
Indexes are a common way to enhance database performance. An index allows the database server to find and retrieve specific rows much faster than it could do without an index. But indexes also add overhead to the database system as a whole, so they should be used sensibly.
CREATE INDEX index_name ON Customer (family_name);
CREATE INDEX index_name2 ON Customer (family_name, given_name);

Indexes can also be used to enforce uniqueness on a column. Note that Primary Keys will automatically be given a unique index.
CREATE UNIQUE INDEX index_name3 ON Branch (manager);
[bookmark: _Toc393849669]Views
A view is like a "virtual relation" or “virtual table” defined through a query. Each attribute selected (or calculated) in the query is an attribute in the view. The Query may be any SQL query.
CREATE VIEW FemaleCustomers AS SELECT * from Customer
	WHERE gender='F';
SELECT * FROM FemaleCustomers;
DROP VIEW FemaleCustomers;

A view is valid only as long as its underlying query is valid and does not have to use all the attributes of the base relations. A view can use computed attribute values defined during the query.
Views can be used in queries as if they were stored relations. However, they differ from stored relations in two important respects:
1. Their "value" can change without being explicitly modified, i.e. a view may change whenever one of its base tables is updated.
2. They may not be able to be explicitly modified or updated, only a certain simple kinds of views can be explicitly updated.

[bookmark: _Toc393849670]5: Domains, Stored Procedures and Triggers
‘Fall seven times. Stand up eight.’
Old Japanese Proverb

[bookmark: _Toc393849671]Programming with SQL
SQL is a powerful language for manipulating relational data. But it is not a powerful programming language. At some point in developing complete database applications
· We need to implement user interactions
· We need to control sequences of database operations
· We need to process query results in complex ways
and SQL cannot do any of these. Database programming requires a combination of
· manipulation of data in DB (via SQL)
· conventional programming (via procedural code)
This combination is realised in a number of ways:
· passing SQL commands via a "call-level" interface (programming language is decoupled from DBMS; most flexible; e.g. Java/JDBC, PHP)
· embedding SQL into augmented programming languages (requires pre-processor for language; typically DBMS-specific; e.g. SQL/C)
· special-purpose programming languages in the DBMS (closely integrated with DBMS; enable extensibility; e.g. PL/SQL, PLpgSQL)
[bookmark: _Toc393849672]Functions
Functions in PostgreSQL allow the developer to write small logical programs to interact with the user and the data. Functions are often written to check input and validate data, aggregate and extract data for reporting, and develop control functions external to the top level application. Functions can be called manually or can be called when an event occurs through triggers.
One of the most powerful features of PostgreSQL is that it allows you to write functions in many different languages. Python, Java, Perl and even PHP are available. Not all the features of the language are available to the developer, and calling / including external application/files is almost impossible. The common default language is PLpgSQL which is very similar to Oracles pl/sql.

[bookmark: _Toc393849673]PLpgSQL
PLpgSQL is a PostgreSQL-specific language integrating features of a procedural programming language and SQL. Functions are stored in the database with the data, which provides a means for extending DBMS functionality. Common functions include implementing constraint checking, triggered functions, complex query evaluation and detailed control of displayed results.
Function Syntax
CREATE OR REPLACE funcName(arg1type, arg2type,)
RETURNS rettype AS $$
	DECLARE
		variable declarations
	BEGIN
		code for function
END;
$$ LANGUAGE plpgsql;
Variable assignment
var := expression;
SELECT expression INTO var

The expression may be an SQL query or a simple value.
[bookmark: _Toc393849674]Variable Types
PLpgSQL constants and variables can be defined using:
· Standard SQL data types (CHAR, DATE, NUMBER, ...)
· User-defined data types (e.g. Point)
· A special structured record type (RECORD)
· Table-row types (e.g. Branches%ROWTYPE)
· Types of existing variables (e.g. Branches.location%TYPE)

[bookmark: _Toc393849675]Return Types
A PostgreSQL function can return a value which is:
· An atomic data type such as an integer, float, text etc (e.g. create function factorial(int) returns int ...)
· A tuple (e.g. create function EmployeeOfMonth(date) returns Employee ...)
· A set of atomic values i.e. a table column (e.g. create function allSalaries() returns setof int ...)
· A set of tuples i.e. a table (e.g. create function OlderEmployees returns setof Employee)
[bookmark: _Toc393849676]Syntax
If statement
IF cond_1 THEN
	statements_1
ELSIF cond_2 THEN
	statements_2
ELSE
	statements_n
END IF;
Loops
LoopName: LOOP
	statements
	LEAVE LoopName;
	more statements
END LOOP;

WHILE condition DO
	statements
END WHILE;

FOR LoopName AS CursorName
	CURSOR FOR Query DO
	statements
END FOR;

Example: T-SQL Function
CREATE OR REPLACE FUNCTION withdraw(acctNum text, amount real)
RETURNS text AS $$
DECLARE
	current NUMERIC;
	newbalance NUMERIC;
BEGIN
	SELECT INTO current balance FROM Accounts WHERE account_id = acctNum;
	IF (amount > current) THEN
		return 'Insufficient Funds';
	ELSE
		newbalance := current - amount;
		UPDATE Accounts SET balance = newbalance WHERE acctNo = acctNum;
		return 'New Balance: '||newbalance;
	END IF;
END;
$$ LANGUAGE plpgsql;
[bookmark: _Toc393849677]Overloading
PLpgSQL allows overloading, that is functions with the same name but with different argument types. For example:
CREATE FUNCTION add(int, int) RETURNS int
CREATE FUNCTION add(int, int, int) RETURNS int
CREATE FUNCTION add(char(1), int) RETURNS int
[bookmark: _Toc393849678]Invoking a Function or Stored Procedure
PLpgSQL functions can be invoked in several ways:
· As part of a SELECT statement
select myFunction(arg1,arg2);
select * from myTableFunction(arg1,arg2);

· As part of the execution of another PLpgSQL function
PERFORM myVoidFunction(arg1,arg2);
result := myOtherFunction(arg1);

· Automatically, via an insert/delete/update trigger
[bookmark: _Toc393849679]Exception Handling
Later versions of PostgreSQL allow the use of exceptions to handle errors. When an exception occurs:
1. Control is transferred to the relevant exception handling code
2. All database changes so far in this transaction are undone
3. Handler executes and then transaction aborts (and function exits)
BEGIN
	Statements...
	EXCEPTION
		WHEN Exceptions1 OR Exception3 THEN
			StatementsForHandler1
		WHEN Exceptions2 THEN
			StatementsForHandler2
END;

Each Exception is an OR list of exception names, for example,
division_by_zero OR floating_point_exception OR ...

You can output messages via the RAISE operator. These messages generate server log entries of different severities. DEBUG, LOG, INFO, NOTICE, WARNING, and EXCEPTION. For example:
RAISE DEBUG 'Simple message';
RAISE NOTICE 'User = %',user_id;
RAISE EXCEPTION 'Fatal: value was %',value;

RAISE EXCEPTION also generates a RAISE_EXCEPTION exception. It should be noted that the only way to output text (used extensively during debugging) is through the RAISE command.
[bookmark: _Toc393849680]Dynamically Generated Queries
Strings can be built within a function and executed as a query. This is often useful when creating audit records in triggers. EXECUTE takes a string and executes it as an SQL query. This mechanism allows us to construct queries "on the fly".
EXECUTE 'DELETE FROM Accounts '|| 'WHERE holder='||quote_literal($1);

EXECUTE string can be used in any context where the query string could have been used.
[bookmark: _Toc393849681]Triggers
Triggers are procedures that are stored in the database and are activated in response to database events. A database event, insert, update or delete activates the trigger which executes a stored function (action).
Examples of uses for triggers:
· Checking schema-level constraints on update
· Maintaining summary data
· Building audit logs
· Performing multi-table updates (to maintain assertions)
Actions can be executed before, after or instead of the triggering event. Actions executed before the event, can modify or even skip the event. Actions executed after cannot, although they can rollback the event as the action exists within the same transaction. Actions have access to the event data through the NEW and OLD variables.
Syntax for PostgreSQL trigger definition:
CREATE TRIGGER TriggerName
	{AFTER|BEFORE} Event1 [OR Event2 ...] ON TableName
FOR EACH {ROW|STATEMENT} EXECUTE PROCEDURE FunctionName(args...);

Return results
Delete triggers must return OLD, as there is no NEW variables. Insert and Update triggers must return NEW, although the NEW variable may have been modified, and both can return NULL to skip the event.
[bookmark: _Toc393849682]PostgreSQL Settings

[bookmark: _Toc393849683]Access Control
pg_hba
The pg_hba.conf file controls client authentication. This file lists the access requirements for the PostgreSQL server.
Each line in the file specifies the type of connection, an optional client IP address range, a database name, a user name, and the method of authentication to be used. When a client connection is established the first line that matches is used to perform authentication.
The connection type can be either local, host, hostssl, or hostnossl. Local connections are unix socket connections from the same machine. Host connections are made via TCP/IP, optionally through an SSL connection.
Database and user names can be a single name, a comma seperated list or the keyword 'all' which matches every database or user.
Finially the authentication method to use.
· Trust: Allows the connection unconditionally.
· Reject: Rejects the connection unconditionally.
· md5: Requires an md5 encrypted password for the given user.
· password: Requires a password for the user. This is sent in clear text and should not be sent over untrusted networks.
· ldap: Authenticate via a remote LDAP server.
· ident sameuser: Use the local system username of the user attempting the connection. Other ident options are available, but this is beyond the scope of this course.
An example:
local	all	all				ident sameuser

If any user is logged into the local machine, allow them to connect to the “mydb” database. Use the current users local username as the database user to connect as.
host	mydb	all	127.0.0.1/32		trust
If any user connects to the database from the 127.0.0.1 (localhost) IP address, allow them unconditional access.
host	all	jon	192.168.93.0/24		md5

User “jon” may connect from the 192.168.93 subnet and must provide an md5 hashed password for authentication testing.
User Roles
PostgreSQL uses the concept of roles to assign access permissions to individual users. Roles are separate from operating system users, though often they correspond for ease of administration. Roles are valid across the all databases in the DBMS, though role permissions are set per database.
To create a role use the CREATE ROLE command or the createuser shell command:
CREATE ROLE jenny;
$ createuser jenny

Each connection to the DBMS is associated with a role and that role determines the permissions and access control available to that connection. A role can have a number of attributes that define the privileges available to the connection.
Login: The role can be considered to be a database user. They can initialise a connection to a database.
CREATE ROLE jenny LOGIN;
CREATE USER jenny;

Superuser: A database superuser is assumed to have full permission across the databases. Be careful with this role.
CREATE ROLE jenny SUPERUSER;

Database Creation: This role allows users to create new databases. The new database will also be owned by the role unless otherwise specified.
CREATE ROLE name CREATEDB.

Role Creation: This role can create other roles (except superuser)
CREATE ROLE jenny CREATEROLE

Password : A password is only required if the authentication method requires the user to supply a password.
CREATE ROLE jenny PASSWORD 'password'
Access Privileges
Objects in a database are (usually) owned by the role which created it. Most objects only allow the owner (or superuser) to use the object. To allow other roles to use the object, privileges must be granted to that role.
Privileges include;
· SELECT
· INSERT
· UPDATE
· DELETE
· REFERENCES
· TRIGGER
· CREATE
· CONNECT
· TEMPORARY
· EXECUTE
· USAGE.
To assign privileges to a role use the GRANT command.
GRANT UPDATE ON Accounts TO jenny;
REVOKE UPDATE ON Accounts FROM jenny;

The keyword ALL grants all privileges on that object to a role, and the keyword PUBLIC assigns the privilege to every role.
GRANT ALL ON Accounts TO PUBLIC;
REVOKE ALL ON Accounts FROM PUBLIC;
[bookmark: _Toc393849684]Configuration
Depending on the requirements of the database applications on the DBMS, and the other applications running on the server, you will want to configure and optimise the DBMS appropriately. As a general rule you will want to calculate the average number of concurrent queries and allocate the available memory accordingly.
listen_addresses: A comma-seperated list of TCP/IP address(es) on which the server is to listen for connections from client applications. The value takes the form of a comma-separated list of host names and/or numeric IP addresses. The special entry * corresponds to all available IP interfaces.

port: The TCP port the server listens on; 5432 by default.

max_connections: The maximum number of concurrent connections to the database server. The default is 100 connections.

authentication_timeout: The maximum time to complete client authentication, in seconds. The default is one minute (1m).

ssl: Enables SSL connections.

shared_buffers: Sets the amount of memory the database server uses for shared memory buffers. The default is typically 32 megabytes (32MB). This setting must be at least 16 kilobytes times max_connections. Settings significantly higher than the minimum are usually needed for good performance, ten to one hundred megabytes are recommended for production installations.

work_mem: Specifies the amount of memory to be used by internal sort operations and hash tables before switching to temporary disk files. The value is defaults to one megabyte (1MB).

maintenance_work_mem: Specifies the maximum amount of memory to be used in maintenance operations, such as VACUUM, CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. It defaults to 16 megabytes (16MB).

[bookmark: _Toc393849685]Backup and Restore
Using MVCC, PostgreSQL can take a snapshot extract to a database which is guarenteed to be correct. This dump is then written to disk as a series of SQL statements, which can recreate the database in the same state. PostgreSQL provides the pg_dump application for this purpose.
$ pg_dump bank > bank.dump

To regenerate the database from the dump file the SQL can be imported into a new (and empty) database.
psql bank < bank.dump

Before restoring a dump file, all the users and roles from the previous database must already exist. Otherwise the restore will not recreate the objects with the original permissions.
Dump All
pg_dump only dumps a single database as specified on the command line. For a full backup of every database, PostgreSQL provides the pg_dumpall application.
pg_dumpall > databases.dump

This can be restored in a similar to previous.
psql postgres < databases.dump

The restore must be performed as a database superuser, which is required to reload the role and tablespace information.

	Notes:

Advanced SQL Testing	(cc)-by-sa – Evan Leybourn	Page 6 of 63
image2.png

image3.emf

image4.emf

image5.emf

image6.png
> New Project - SQL Power Architect

File Edit Connections ETL OLAP Enterprise Tool

DzB2lalse 26 BaE

|| branch_id: VARCHAR [PI ~
Exported keys folder for WorksAt.
mported keys folder for WorksAt.
Staff
staff_ic: INTEGER [PK]
ranches B
given_name: VARCHAR i bbranch_id: VARCHAR [PK] =
family_name: VARCHAR [B
role: VARCHAR manager: INTEGER [FK] =
location: VARCHAR L4
T -
| i)
! % T be
¥
| WorksAt &
L [staff_id: INTEGER [PFK] jQusiiozr
] opened_by: INTEGER [F| lbranch_id: VARCHAR [PFK lcustomer_id: INTEGER [PK]
Exported keys folder for Accounty|
Inported keys flde for Accounts T bbranch_id: VARCHAR [FK]
| lgiven_name: VARCHAR
| family_name: VARCHAR PleyPen Toolbar]
—+gender: CHAR
Transactions £ | |dob: DATE
Accounts lage: INTEGER
ransaction_id: INTEGER [PK PP
Exported keysflde for Transact [account_id: INTEGER [PK]
Inported keys flde for Transact transaction_date: DATE
Indicesfoder for Transactons. ransaction_amt: NUMERIC jcustomer_id: INTEGER [FK
Jaccount_id: INTEGER [FK] bbalance: INTEGER
L4 lopened_by: INTEGER [FK]
——
PR - |

image7.png
jstaff_id: INTEGER [PK] =

|given_name: VARCHAR
family_name: VARCHAR

branch_id: VARCHAR [PK]

|ransaction_id: INTEGER [FK]|

lcustomer: VARCHAR [FK]

bp——T
[role: VARCHAR imanager: INTEGER
location: VARCHAR
T staff_works_at: INTEGER _
! t
|
|
-
| last_name: VARCHAR [PK
| lranch_id: VARCHAR [FK]
| first_name: VARCHAR
igender: DATE
l (dob: DATE
5 I oo TeGER
transaction_id: INTEGER [PK o I
transaction_date: DATE H—— -aipalance: INTEGER
ransaction_amt: NUMERIC lopened_by: INTEGER [FK]

image1.png
) ®O

