
Introduction to Agile Methods

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 1 of 89

Introduction to Agile Methods

Student Guide

Introduction to Agile Methods by Evan Leybourn is licensed under a
Creative Commons Attribution-ShareAlike 3.0 Australia License
<http://creativecommons.org/licenses/by-sa/3.0/au/>

Evan Leybourn
evan@theagiledirector.com
Twitter: @eleybourn

http://creativecommons.org/licenses/by-sa/3.0/au/
mailto:evan@theagiledirector.com

Introduction to Agile Methods

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 2 of 89

OTHER WORKS BY

EVAN LEYBOURN

DIRECTING THE AGILE ORGANISATION –

BY EVAN LEYBOURN

http://theagiledirector.com/book

 Embrace change and steal a march on

your competitors

 Discover the exciting adaptive

approach to management

 Become the Agile champion for your

organisation

Business systems do not always end up the way that we first plan them. Requirements can

change to accommodate a new strategy, a new target or a new competitor. In these

circumstances, conventional business management methods often struggle and a different

approach is required.

Agile business management is a series of concepts and processes for the day-to-day

management of an organisation. As an Agile manager, you need to understand, embody

and encourage these concepts. By embracing and shaping change within your organisation

you can take advantage of new opportunities and outperform your competition.

Using a combination of first-hand research and in-depth case studies, Directing the Agile

Organisation offers a fresh approach to business management, applying Agile processes

pioneered In the IT and manufacturing industries.

http://theagiledirector.com/book

Introduction to Agile Methods

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 3 of 89

TABLE OF CONTENTS

Other Works by Evan Leybourn .. 2

Directing the Agile Organisation – by Evan Leybourn ... 2

Table of Contents ... 3

What Does Agile Mean? ... 6

The Agile Manifesto ... 7

Agile Methods .. 8

Key Points ... 8

Understanding Waste .. 9

Critical Success Factors .. 10

Common Misconceptions .. 11

Scrum Overview ... 12

Kanban Overview ... 14

Test Driven Development (TDD) Overview .. 16

Extreme Programming (XP) Overview ... 17

Feature Driven Design (FDD) Overview ... 17

Project Roles .. 19

Project Team .. 20

Interested and Committed .. 20

Primary Roles ... 21

Project Initiation .. 23

Specifications in Agile? ... 24

Beginning the Process ... 24

Outcomes ... 24

Backlog ... 25

Accuracy ... 27

Introduction to Agile Methods

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 4 of 89

Estimating Effort .. 28

How? ... 28

Estimating Time.. 30

Cost / Time / Scope .. 31

Starting an Iteration .. 33

Iteration Planning Meeting .. 35

During an Iteration .. 39

Daily Lifecycle ... 40

Task Lifecycle .. 41

Development Hints .. 43

Test Driven Development .. 44

Continuous Integration .. 45

Scrum Meeting (aka Daily Stand-up) ... 48

Inspection... 49

Burndown & Burnup Charts .. 50

Progress Problems ... 51

Finishing an Iteration... 54

Iteration Review ... 55

Kaizen and the Iteration Retrospective ... 56

References ... 57

Books & Links ... 58

Tools ... 58

Supporting Material – Example Release and Test Management Plan 59

Schedule of Activities & Description of the Approval Process .. 60

Roles, Responsibilities and Resource Requirements .. 63

Roll Back Strategy ... 64

Testing Methodology ... 65

Mapping Between the Test Scripts and the Requirements .. 67

Test Report Template ... 68

Supporting Material – Example High-Level Business requirements 69

Glossary of Terms .. 70

Introduction ... 70

Scope of Requirements Specification .. 70

Functional Requirements ... 71

Non-Functional Requirements .. 71

Introduction to Agile Methods

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 5 of 89

Requirements Imposed by Specific Legislation Strategies ... 74

Constraints ... 74

Assumptions ... 75

Risks .. 75

Supporting Material – Example Technical Architecture ... 76

Conceptual System Design Section ... 77

Conceptual System Design Diagram ... 79

Detail System Design Checklist .. 79

System Design Description .. 83

Business Continuity ... 83

Expected Issues .. 83

Supporting Material – Example Design Page .. 84

Supporting Material – Example Release Approval .. 86

Release Approval.. 87

Compliance Outcome .. 87

Defect Testing Outcome .. 87

Performance Testing Outcome .. 88

Issues To Carry Over To The Next Release .. 88

Sign Off ... 89

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 6 of 89

WHAT DOES AGILE MEAN?

‘On two occasions I have been asked, “Pray, Mr Babbage, if you put into the

machine wrong figures, will the right answers come out?” [...] I am not able rightly

to apprehend the kind of confusion of ideas that could provoke such a question.’

Charles Babbage, 1864

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 7 of 89

THE AGILE MANIFESTO

The “Agile Software Development Manifesto” was developed in February 2001, by

representatives from many of the fledgling “agile” processes such as Scrum, DSDM, and XP.

The manifesto is a set of 4 values and 12 principles that describe “What is meant by Agile".

THE AGILE VALUES

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

THE AGILE PRINCIPLES

1. Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter time-scale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity – the art of maximising the amount of work not done – is essential.

11. The best architectures, requirements, and designs emerge from self-organising

teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behaviour accordingly.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 8 of 89

AGILE METHODS

The term Agile actually refers to a concept, not a specific methodology. There are many,

and sometimes conflicting, methods that can be used under the Agile umbrella. These

include;

 Agile Unified Process,

 Behaviour Driven Development (BDD),

 Crystal Clear,

 Dynamic Systems Development Method (DSDM),

 Extreme Programming (XP)

 Feature Driven Development (FDD),

 Kanban

 Lean Development,

 Rapid Application Development (RAD),

 IBM - Rational Unified Process (RUP),

 Scrum,

 Test Driven Development (TDD),

KEY POINTS

All of the above methods have four key points in common.

1. Iterative design process

2. Continuous stakeholder engagement

3. Aims for quality and reliable software

4. Short development cycles (up to a month) allows to regular delivery of software

This shows that an Agile approach is appropriate in contexts where the outcomes are not

known (or can’t be known) in advance and where the delivery of the outcomes cannot be

fully controlled.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 9 of 89

The following figures1 are an excellent example of the differences between traditional (or

phased) software development vs. the Agile approach of iterative development.

FIGURE 1: THE TRADITIONAL APPROACH (PHASED DELIVERY OF KNOWN OUTPUTS)

FIGURE 2: THE AGILE APPROACH (ITERATIVE DELIVERY TO MEET CHANGING EXPECTATIONS)

UNDERSTANDING WASTE

The techniques and frameworks within Agile aim to increase development efficiency, by

eliminating all ‘wasteful’ processes. Drawing on the successful concepts from the Lean

manufacturing frameworks, we can define 3 major forms of waste.

1. Mura (Unevenness): Mura exists where there is a variation in workflow, leading to

unbalanced situations, most commonly where workflow steps are inconsistent,

unbalanced, or without standard procedures.

1
 Images with thanks from Jeff Patton: http://www.agileproductdesign.com/

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 10 of 89

2. Muri (Overburden): Muri exists where management expects unreasonable effort

from personnel, material or equipment, most commonly resulting from unrealistic

expectations and poor planning.

3. Muda (Waste): Muda is any step in the production workflow that does not add

direct value to the Customer. The original seven wastes, as defined by the Toyota

Production System (TPS), were:

1. Transport,

2. Inventory,

3. Motion (moving more than is required),

4. Waiting,

5. Overproduction,

6. Over Processing (from poor design), and

7. Defects (the effort involved in inspecting for, and fixing, defects).

CRITICAL SUCCESS FACTORS

The successful application of an agile methodology depends on the relative maturity of an

organisation in relation to Customer Engagement, Staff Resources, Technology, and

Processes. These measures are defined as follows:

 Customer Engagement – Product owners involved in teams daily activities, defines

requirements, drives the prioritisation of requirements, and has decision making

delegation of authority.

 Staff – have experience in an agile method, are skilled in the Standard Operating

Environment (SOE) toolsets, have an understanding of the underlying data and

technical infrastructure, and are conversant in the development, testing, and

configuration and release procedures.

 Technology – a stable and well documented technology stack, with clearly defined

ownership and service levels, providing discreet development, testing and release

environments that are sized and supported for the delivery of projects, and

controlled through rigorous configuration and release management.

 Processes – business processes exist for all domains, with cross stream

interdependencies defined and service levels agreed, and clear business ownership

and delegations of authority identified.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 11 of 89

COMMON MISCONCEPTIONS

Being a generic term, Agile means different things to different people. Therefore, before

we go much further, I should clarify some of the more common misconceptions

surrounding Agile.

 Agile is ad hoc, with no process control: First of all, Agile isn’t a lack of process.

Agile provides a range of formal processes, and methods, to inform work processes,

customer engagement and management models. Conversely, Agile isn’t about

blindly following the prescribed ‘agile’ methods and processes. Agile is about using

your common sense to apply processes, as determined by the current situation,

and shaped by the agile philosophy.

 Agile is faster and/or cheaper: Agile isn’t significantly faster, or cheaper, than

alternative frameworks. Put another way, in most cases you can’t get significantly

more effort out of your Teams by moving to an agile approach. While there is an

overall efficiency gain when utilising agile methods, well-managed Agile and non-

Agile Teams will deliver products and services in approximately the same time and

effort.

 Agile teams do not plan their work or write documentation: Agile is not an

excuse to avoid appropriate planning or writing documentation. It is an on-demand,

or Just-In-Time, approach that encourages continuous planning and documentation,

but only when needed for specific Customer Requirements. This allows Customers

and Teams to determine if the planning, or document, adds value to the process or

product. It creates an opportunity to emphasise valuable documents, and eliminate

anything that isn’t useful.

 An Agile project never ends: While this may be true in some situations, the benefit

of Agile is that work will continue while the Customer continues to gain business

value, and that value is worth more than the cost of developing it. Most projects, in

any industry, have a point of diminishing returns. This is the ideal time for an agile

project to end.

 Agile only works for small organisations: Agile works for projects, teams and

organisations of any size, not just small projects. That is not to say that it will work

for all organisations, but size is rarely a factor. Large and complex projects and

organisations are often excellent candidates for Agile transformation, where it is

difficult, or impossible, to know all your Customer’s Requirements in advance.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 12 of 89

 Without upfront planning, Agile is wasteful: This assumes that your Customer

knows the detail of all of their Requirements in advance. If this is true, then by all

means, undertake comprehensive upfront planning. However, in reality this is rare,

and usually leads to the greater ‘waste’ of having undertaken design and

development work that was ultimately unnecessary. Agile Business Management

encourages minimal upfront planning, ensuring everyone is working towards the

same goal, and reduces the risk of miscommunication.

 Finally, Agile is not the solution to all your problems. It is a change in approach

and culture that comes with its own set of benefits and issues.

SCRUM OVERVIEW

Scrum is described as a ‘framework within which you can employ various processes and

techniques’, rather than a process, or a technique, for building products. The Scrum

framework is primarily team based, and defines associated roles, events, artefacts and

rules. The three primary roles within the Scrum framework are:

1. The product owner who represents the stakeholders,

2. The scrum master who manages the team and the Scrum process

3. The team, about 7 people, who develop the software.

Each project is delivered in a highly flexible and iterative manner where at the end of every

iteration of work there is a tangible deliverable to the business. This can be seen in the

following diagram.

FIGURE 3: SCRUM FRAMEWORK

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 13 of 89

The requirements that form the basis of the project are collated into what is called a

Project Backlog, and is updated regularly. The features that are associated with these

requirements are termed user stories. This relationship is illustrated in the following

diagram:

FIGURE 4: SCRUM PROJECT STRUCTURE

The work is time-boxed into a series of 1 to 4 week cycles where the business and project

team estimate which user stories in descending priority order are achievable each cycle, or

Iteration. This subset of user stories from the Project Backlog form the basis of the

Iteration Backlog planned for delivery over that two week period.

Under Scrum, there are 3 timeboxed (or fixed duration) meetings held during an Iteration

plus a daily stand-up meeting for the team, scrum master and (ideally) the product owner.

At the beginning of an Iteration, features to be developed during the iteration are decided

during the iteration planning meeting. At the end of the Iteration are another 2 meetings,

the Iteration review and Iteration retrospective where the team reviews the product and

demonstrates the use of the software, as well as reflect on, and improve, the Iteration

process itself.

After the iteration is complete, the next set of user stories is selected from the Project

Backlog and the process begins again. Burn rate is monitored to determine when funding

will be exhausted.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 14 of 89

TABLE 1: KEY SCRUM CONCEPTS

Concept Description
Project Discreet set of end user requirements that

have been grouped, prioritised and funded.
Requirement The end user statement that outlines their

information need.

Iteration (also known as a “Sprint”) An iteration is a 1to 4 week time-boxed
event focused on the delivery of a subset of
user stories taken from the Project Backlog.

Project Backlog The Project Backlog is the current list of user
stories for the Project. User stories can be
added, modified or removed from the
Backlog during the Project.

Iteration Backlog (also known as a
“Sprint Backlog”)

Subset of user stories from the Project
Backlog that are planned to be delivered as
part of an Iteration.

User Stories The user story is a one or two line
description of the business need, usually
described in terms of features.

Tasks Tasks are the activities performed to deliver
a user story.

Technical Debt This refers to items that were either:
 missing from the Planning meeting;

or
 deferred in favor of early delivery.

KANBAN OVERVIEW

The original concepts of Kanban (カンバン) were developed in the 1940s and 50s by Taiichi

Ohno as part of the Toyota Production System, as a mechanism to control Just-In-Time

(JIT) production and manufacturing processes. Kanban, which approximately translates as

‘signboard’, is described as a ‘visual process management system that tells what to

produce, when to produce it, and how much to produce’. The modern Kanban method, as

formulated by David J Anderson in 2007, is an adaption of the original JIT approach, with an

emphasis on staff welfare and continuous process improvement practices.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 15 of 89

FIGURE 5: AN EXAMPLE KANBAN BOARD

There are 6 core elements to Kanban:

1. Visualise (Card Wall)

2. Limit WIP

3. Manage Flow (and reduce bottlenecks)

4. Make Policies Explicit

5. Feedback Loops

6. Improve Collaboratively

The simplest visualisation of workflow has 4 different states which a task would progress

through during its lifecycle. These states are;

1. Iteration Backlog – ready to be worked on during the current iteration

2. In Progress – currently being developed by a team member

3. Testing – undergoing integration, system or UAT testing

4. Done – complete and ready to be demonstrated at the end of the iteration

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 16 of 89

TEST DRIVEN DEVELOPMENT (TDD) OVERVIEW

Test-driven development is a development methodology that requires developers to create

automated tests before writing the code or function itself. If the tests pass, then the code is

displaying correct behaviour. These tests should be run automatically using one of the

xUnit applications.

There are 5 steps to TDD.

1. Create a test

2. Add the test to the test catalogue

3. Write the code

4. Run the tests (all of them)

5. Clean up the code as required. (Refactor)

FIGURE 6: TEST-DRIVEN DEVELOPMENT FLOWCHART

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 17 of 89

EXTREME PROGRAMMING (XP) OVERVIEW

XP is an agile development methodology, intended to accept and respond to changing

customer requirements.

XP describes four basic activities within the software development process.

1. Writing the software

2. Testing the software, regularly and automatically

3. Listening and understanding the customer

4. Designing, or refactoring, an application framework to reduce unnecessary

dependencies between features.

XP also includes development methodologies such as;

1. Pair programming, with two developers working together

2. Common code standards (documentation, naming conventions, whitespace)

3. An understandable system metaphor, where all classes and functions names should

be understandable.

FEATURE DRIVEN DESIGN (FDD) OVERVIEW

FDD is a model-driven process that consists of five basic activities. For accurate state

reporting and keeping track of the software development project, milestones that mark the

progress made on each feature are defined.

PROCESSES

 Domain Object Modelling: Define the domain of the problem to be solved and

create an object framework.

 Developing by Feature: Functions are broken into the smallest possible part and

developed in the order of priority.

 Individual Class Ownership: Each code class is assigned to a single owner who is

responsible for the consistency, and performance of the class.

 Feature Teams: A small, dynamically formed team that designs and develops each

feature.

 Inspections: Carried out to ensure good quality design and code.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 18 of 89

 Configuration Management: A log of all features and the source code that have

been completed to date.

 Regular Builds: Ensures there is always a fully functional system.

ACTIVITIES

Develop Overall Model:

 High level scoping

 Create domain walkthroughs for each modelling area

 Peer review of each model

 Merge into complete system model

Build Feature List:

 Split domain into subject areas

 Separate subject areas into business activities

 Separate business activities into individual features

 e.g. Confirm the password of user

Plan by Feature:

 Assign features to classes

 Assign classes to developers (or development teams)

Design by Feature:

 Create a set of features to be developed within two weeks

 Build sequence diagrams for each feature

 Refine model for each feature

 Inspect and review the design

Build by Feature:

 Develop the code for each feature and class

 Unit test

 Promote to build

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 19 of 89

PROJECT ROLES

‘So Mr Edison, how did it feel to fail 10,000 times?’

‘Young man, I didn’t fail, I found 9,999 ways that didn’t work’

Thomas Edison, anecdotal (on his invention of the incandescent light)

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 20 of 89

PROJECT TEAM

The project team is a self governing group capable of independently delivering to a

customer’s requirements. As a result the team requires cross functional representation of

skills and knowledge in the data, tools and infrastructure domains.

A typical project team can be comprised of the following:

 Product Owner

 Scrum Master

 Architects / Analysts

 Designers

 Developers

The project team characteristics and responsibilities are as follows:

 7 ± 2 (5 to 9) resources who are allocated full-time to an Iteration

 Cross functional in nature across skills, applications, data and organisational

knowledge

 Self empowered

 Responsible for delivering the product

 Determine the tasks required to deliver each feature

 Estimate the effort for each task

 Develop the features

 Resolve issues

Ideally the project team, including the product owner are co-located.

INTERESTED AND COMMITTED

Interested roles are individuals who have an “interest” in the software development. Whilst

they should be kept informed of progress, they do not have the same level of responsibility

and input into the development as committed roles. Interested parties include the Users,

the Customers and the Product Owner.

Committed roles are responsible for the software development, and are the people who

“do” the work. Committed parties include the Scrum Master, the Team and Testers.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 21 of 89

FIGURE 7: PIGS AND CHICKENS

PRIMARY ROLES

FIGURE 8: BUSINESS VS TECHNICAL ROLES

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 22 of 89

TABLE 2: PRIMARY SCRUM ROLES

Role Primary Responsibility Typical Does Not
Users
Interested Role

 Use the software
 Identify issues &
 Provide feedback

 There are no typical
users.

 Set Scope
 Test Work

Customers
Interested Role

 Define, start and end
the project

 Internal managers
 External Clients

 Direct Work

Product
Owner
Interested Role

 Manage the product
backlog

 Set the scope
 Approve Releases

 Project Manager
 Product manager
 Customer

 Manage the
Team

Scrum Master
Committed
Role

 Manage the Agile
process

 Report on progress

 Project manager
 Team Leader
 Team member

 Prioritise
features

Developers
Committed
Role

 Develop features
 Resolve issues

cross functional
 Developer
 Designers
 Writers
 Administrators

 Prioritise
features

Testers
Committed
Role

 Test
 Approve or reject

features for release

 Existing developers
 Dedicated testers

 Test their own
code

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 23 of 89

PROJECT INITIATION

aka Feasibility

aka Sprint 0 (Scrum)

aka Iteration 0 (XP)

 ‘It is always wise to look ahead, but difficult to look further than you can see.’

Winston Churchill, ~1960

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 24 of 89

SPECIFICATIONS IN AGILE?

Contrary to common opinion, it is very important to have a good specification before

starting an agile project. By building this specification (or backlog in agile terminology) a

project will;

 Reduce Risk & Uncertainty

 Improve Decision Making and integrate With Long term Goals

 Improved cost planning (including Staff Hiring)

 Prioritise research and information Gathering

BEGINNING THE PROCESS

Unlike traditional waterfall methods, the specification phase of an agile project is very

short; usually no more than 1 or 2 days, and the full team should be available at inception.

During the period the customer should be made fully aware of their role. The design

should contain the following;

 Problem statement that needs to be addressed

 Desired business objectives, outcomes and benefits for this project

 Identified key stakeholders

 High Level Business Requirements

 Architectural and technical scope

 Testing requirements

OUTCOMES

The outcomes from Project Initiation, or Iteration 0, are:

 The team should be identified and brought together

 If not part of the team, identify and train the product owner

 Create the product backlog in low detail. Allow customers to slowly build the

product requirements throughout the process.

 Estimate the product backlog.

 Plan length of the iteration, anywhere from 1 day to 4 weeks. Each iteration should

accomplish something releasable. Short iterations short can reduce overtime.

 Add any team training to the backlog as tasks.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 25 of 89

BACKLOG

FIGURE 9: PRODUCT BACKLOG

The backlog contains all the user stories (features) for the product. The Product Owner is

responsible for defining the user stories, and assigning each with a priority for delivery.

The order may also be influenced by story dependencies or business value e.g. a lower

priority story may need to be done first before a higher priority story can be started.

The user stories describe the set of features that will satisfy each requirement. The high

priority user stories that are candidates for the next Iteration require sufficient detail for

the team to solution, and should be sized to fit within two weeks.

Each user story should meet the INVEST characteristics, as defined by Bill Wake.

 Independent: Each Requirement should be as self-contained as possible, with

minimal dependencies on any other Requirement. This allows for easy reordering

or removal, as Customer Requirement’s change.

 Negotiable: The Customer can change a Requirement at any time, up to the point it

enters the Iteration Backlog.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 26 of 89

 Valuable: Each Requirement should deliver a tangible, and measurable, benefit to

the Customer.

 Estimatable: The definition of each Requirement is such that the Team can estimate

it.

 Small: The estimate, and delivery, of a Requirement, should be within a few days, or

a single Iteration.

 Testable: Each Requirement should have appropriate quality control and quality

assurance metrics, so the Customer can validate their Deliverables against the

original Requirement.

Each feature should contain, at a minimum, the function, priority, an estimate of the effort

to develop and the estimate risk (0 - 100%) based on how accurate the team feels the

estimate is.

In can be helpful to structure each user story in the following format.

As a [role]

I want a [goal/desire]

So that [benefit]

The [role] is the expected end-user of the user story, who is usually different from the

Customer. The [goal/desire] of each user story describes what should be delivered, and the

[benefit] provides the context, or the Why.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 27 of 89

ACCURACY

FIGURE 10: ESTIMATE ACCURACY OVER TIME

It is important to note that to increase the accuracy of any estimate, the effort involved

increases exponentially. In Agile, we are only interested in the initial estimation.

By keeping Iterations short, we can better review and respond to deviations in the estimate

quickly. See the Burndown chart section for more information.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 28 of 89

ESTIMATING EFFORT

STORY ESTIMATION

A Story Point is single number intended to represent all of the work required for the whole

team to build the final product. As a result, to perform estimation based on story points it

requires cross functional representation of all the requisite skills and knowledge in the

systems, data, tools and infrastructure during the Iteration Planning meeting.

Story points are used for the high level estimation of user stories. They are usually based

on the delivery of similar user stories in previous Iterations. This assumes that the project

team, systems and infrastructure are relatively constant between one project and the next.

The size of a Story point for a given project team will eventually normalise over time.

All stories should be assigned as estimated effort, or cost, to implement. We use a modified

Fibonacci series, such as 1, 2, 3, 5, 8, 13, 20, 40, and 100, to represent effort. This

encourages features to be split into the smallest task possible, and provides a more

realistic estimate range.

TASK ESTIMATION

Task estimation is performed at the Iteration level. During the Iteration Planning session

the team breaks the user stories into their composite tasks to determine how they will be

delivered. The process of solution decomposition may reveal additional tasks, or more

complex tasks that were not apparent during the high level story point based estimation

that impact what was planned to be delivered. The scope of the Iteration can be

renegotiated with the product owner if this is the case. Unlike story points, these estimates

are an indicative idea of how much time they will take in an ideal world.

HOW?

Tasks can be estimated in 4 ways.

1. Expert opinion: The team member with specific understanding, or who is most

likely to develop the task, can provide a more accurate estimate of effort.

E.g. A database administrator can better estimate effort for database tasks.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 29 of 89

2. Comparison: Comparing a task to another, already estimated, task.

e.g. "Task A is about twice the effort of Task B"

3. Components: If a task is too large to accurately estimate, break it into small sub-

tasks.

e.g. User management can be broken into interface, login, ACL, etc.

4. Planning poker: If using Planning Poker, estimates must not be mentioned at all

during discussion to avoid anchoring. A timer may be used to ensure that

discussion is structured; any person may turn over the timer and when it runs out

all discussion must cease and a round of poker is played.

Each person lays a card face down representing their estimate of the task, and then

simultaneously turns their cards over.

People with high estimates and low estimates are given an opportunity to discuss

their estimate before anyone else can speak.

Repeat the estimation process until a consensus is reached.

FIGURE 11: PLANNING POKER CARDS

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 30 of 89

ESTIMATING TIME

Converting an estimated cost into estimated time is very simple. There are 2 primary

modifiers that we use. Staff overhead and estimate accuracy (or risk).

STAFF OVERHEAD

This is a percentage modifier for staff availability to work on specific project tasks. It allows

you to take into account factors such as estimated leave, illness, breaks, scrum meetings

etc. The industry standard modifier is 25%-40%, though you should modify this as

required. To calculate staff overhead use the following process;

working hours = (hours per day * days per iteration * staff) – planned leave

project hours = sum of actual (from last iteration)

staff overhead = (working hours/project hours) – 1

CALCULATION

Story Cost x (Staff Overhead + 1) x (Estimate Risk + 1)

e.g.

 4 x (25%+1) x (50%+1)

= 4 x 1.25 x 1.5

= 5 to 7.25 hours

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 31 of 89

COST / TIME / SCOPE

“How much is this going to cost?” - “As much as you're willing to spend.”

“How long is this going to take?” - “As long as it necessary.”

“What am I going to get?” - “Whatever you tell us you want.”

FIXED COST

Where a customer asks for a fixed price quote prior to agreeing to project commencement,

but is flexible on what is delivered and how long it takes.

 Work in absolute customer priority order – reducing the time spent on technical

helper tasks will help meet short-term budget constraints (at the cost of long term,

post-project, efficiency)

 Release in short (1-2 week) iterations – similar to longer waterfall projects, longer

iterations have a tendency to cost overruns to deliver on time

 Monitor velocity and burn rate – this is your key indicator of cost

FIXED TIME

Where a customer asks for delivery by a certain date, but is flexible in scope and cost.

 Work in absolute business value order – increases the number of user stories

complete in a given iteration (high business value = simple, moderate-high priority)

 Enforce iteration duration – Your project will be defined by a fixed number of

iterations, and extending an iteration will push out your final date

FIXED SCOPE

Where a customer asks for a fixed set of deliverables, but is flexible in the time it takes to

deliver and the cost of delivery. This is sometimes known as “heavy agile”.

 Focus on backlog definition and estimation during Iteration 0 to ensure accurate

scope definition

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 32 of 89

FIXED COST AND SCOPE

Where the customer asks for a fixed price quote for a fixed set of deliverables. In this

situation, the final date for delivery is flexible. As well as the points in fixed cost and fixed

scope;

 Increase the estimate risk during Iteration 0 – to ensure your quote for the project

allows for unexpected delays (which would impact on your cost to deliver)

 Update delivery date as required

FIXED COST AND TIME

Where the customer asks for a fixed price quote by a fixed time. In this situation, the exact

set of features (or scope) for delivery is flexible. As well as the points in fixed cost and fixed

time;

 Calculate total cost as cost per iteration – which makes your quote to the customer

very simple.

FIXED TIME AND SCOPE

Where the customer asks for a fixed set of deliverables by a fixed time. In this situation, the

total cost to the customer is flexible. As well as the points in fixed time and fixed scope;

 Pre-assign work to iterations during Iteration 0 – which will define the scope

delivery timetable.

 Pad schedule with extra iterations – to cater to unexpected defects or technical debt

 Increase the size of the team 3-4 iterations prior to the end of the project if

required – to ensure the set of features are completed in time.

FIXED COST, TIME AND SCOPE

Where the customer gives no flexibility in the project.

Cancel the project – this is not an agile project. This should be run using a waterfall

methodology such as PRINCE2 (and even they are likely to fail without some flexibility)

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 33 of 89

STARTING AN ITERATION

‘Make everything as simple as possible, but not simpler.’

Albert Einstein (paraphrased), 1933

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 34 of 89

FIGURE 12: EXAMPLE BUSINESS PROCESS FLOWCHART

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 35 of 89

ITERATION PLANNING MEETING

FIGURE 13: ITERATION PLANNING

The Iteration Planning Meeting is run before the start of each Iteration, and allows the

customer and developers to discuss the requirements and work required for the next

release. This step in the Scrum process focuses on determining the target scope of delivery

for an Iteration, and defines the iteration backlog. The Iteration Planning Meeting should

be no more than 8 hours long (4 weeks pro rata).

The Product Owner and Scrum Master are responsible for updating the Project Backlog in

preparation for the Iteration Planning meeting. This includes clarification, prioritisation

and in some cases investigation of the feasibility of the collated user stories. This activity

also needs to take into consideration any technical debt inherited from previous Iterations.

PART 1 – BUSINESS SPECIFICATIONS

The first part of the iteration planning meeting aims to convert features from the backlog

into a realistic goal for this iteration. The product owner is a part of this process and sets

the priority of the tasks. This also provides the Product Owner with the opportunity to

communicate the required scope of delivery, provide the business context and priority, and

address any questions the project team may have to assist with performing the solution

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 36 of 89

decomposition and estimation steps. This part of the meeting should take no more than ¼

of the time.

Ensure that a copy of the Project Backlog has been distributed prior to the Iteration

Planning meeting to provide the project team with time to consider solution options for

discussion during the workshop, and prepare clarification questions for the Product

Owner.

The participants for this session are as follows:

 Product Owner

 Scrum Master

 Team

 Testers

PART 2 – TECHNICAL SPECIFICATIONS

The second part of the Iteration Planning meeting is technical, and usually without the

product owner. This is the solution decomposition and estimating step in the planning

process and aims to estimate the effort for all features in the release and (optionally) write

the test cases.

The general flow of activity in this step is described in the following diagram:

FIGURE 14: DESIGN AND PLANNING WORKFLOW

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 37 of 89

As a guideline, large tasks should be broken into tasks preferably no longer than 1 day and

tasks that involve waiting should be split into separate tasks. Research tasks should have a

high estimate risk. This is done to enable accurate tracking and the calculation of velocity.

For complex user stories or those with a high number of interdependencies it may be

necessary to split the task decomposition and estimating activities across 2 days and allow

the team members an opportunity to consult with external parties on feasibility and obtain

input into the estimating process.

Always remember that tasks can be created, but features can't.

The participants for this session are as follows:

 Scrum Master

 Team

 Testers

TABLE 3: KEY PLANNING ELEMENTS

Planning Element Description
User Story The user story is a description of the

business need, usually expressed as a
feature.

Story Identifier Every user story will be assigned a unique
identifier for tracking purposes.

Task A task is typically a single activity that can be
described in one sentence that contributes
to the delivery of a user story.
 Generally a task takes no longer than 4-8

hours of effort to complete
 There may be one or many tasks per

user story
 The task can only be assigned to and

owned by one person at a time

Task Identifier A Unique identifier will be assigned to track
each task, and show which user story they
are associated with.

Project Function This describes the architectural layer where
the task activity will be performed.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 38 of 89

Assignee This is the person who will be responsible
for delivering the task. This can done at any
point in the Iteration. The person assigned
to the completion of the task may also
change at any point in the Iteration.

Estimate The estimate in hours is the amount of
effort the team agrees is required to
complete the specified task. The estimate
includes:
 Analysis
 Build
 Unit Test
 Migrate from DEV to TEST
 Integration Testing
 Documentation

Estimate Risk Modifier This is a measure of the confidence level
associated with the estimate provided and
represented as a numeric modifier.

NOTES

 Prepare beforehand.

 This is a creative, problem solving process. Encourage brainstorming.

 Ensure the planning room has plenty of paper, a whiteboard and a computer with

Google access.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 39 of 89

DURING AN ITERATION

‘Treat your men as you would your own beloved sons. And they will follow you into

the deepest valley.’

Sun Tzu, ~6th Century BCE

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 40 of 89

DAILY LIFECYCLE

The daily lifecycle of team activities is as follows;

1. Team members select the next task to work on

2. Undertake the task as described

3. Commit and share the completed task with the rest of the team

4. Write and run the tests that will be used to verify they have been completed

successfully. Verification, unit testing and documentation need to be completed

prior to migrating the deliverable from DEV to SIT.

The assignee for a task may change at any of these steps. Team members will proactively

interact will their colleagues and any internal parties as required to progress the assigned

task to completion, including any quality assurance and review.

The governance of the daily lifecycle is through the daily Scrum Meeting.

FIGURE 15: WORK LIFECYCLE

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 41 of 89

TASK LIFECYCLE

Based on Kanban, a task will progress through a minimum of 4 different states during its

lifecycle. Each task and state should be visible to the team, product owner and customer;

commonly this is done through a card wall or integrated dashboard.

FIGURE 16: BASIC TASK LIFECYCLE

FIGURE 17: COMPLEX TASK LIFECYCLE

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 42 of 89

ITERATION BACKLOG

The Iteration Backlog is the subset of user stories from the Project Backlog that the Product

Owner and project team agreed would be delivered for this Iteration.

The user stories will be broken into tasks which are put into the Iteration Backlog. Based on

the logical sequencing of tasks and agreed prioritisation, the project team members select

the next task to work on and promote this to the “In Progress” state.

IN PROGRESS

In Progress items are tasks that are actively being worked on. This includes both

development and unit testing activities. Once the task has been completed it is promoted

to the “Testing” state.

In Progress tasks include the following types of activity being performed:

 Analysis

 Build

 Unit Test

 Documentation

When a task has been completed the deliverable will be changed to the “Testing” state. In

the case of code based artefacts these will be promoted from the development

environment to the test environment.

BLOCKED

Blocked items are stories and or tasks that have upstream or downstream dependencies

external to the project team that are preventing progress. These impediments are moved

to this holding state to highlight these issues to the Scrum Master and Product Owner for

escalation and resolution.

TESTING

Testing, in this context, is performed by the team’s specialist testing resources. Unit testing

is expected to be undertaken by the developers.

DONE

Tasks are considered “Done” when:

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 43 of 89

 Code has been produced, meets development standards, and has been checked in

and run against current version in source control

 Unit tests written and passed

 System tested and passed

 Quality Assurance reviewed

 Builds without errors for deployment

 Relevant documentation, including diagrams have been produced or updated and

communicated

When the Iteration has completed the user stories selected by the team to be delivered are

either “Done” or “Not Done”. The decision over whether a user story is Done is based on

whether all the pre-requisite tasks associated with this story have been completed. The

completed user stories are presented to the Product Owner in the Iteration Review for

acceptance and sign-off.

NOT DONE

Tasks that are “Not Done” are reviewed in the context of the user stories that they belong

to and if this impacts whether the user story can be considered delivered. The not done

tasks may be rolled into a new user story for the next Iteration, accrued as technical debt,

or it may be decided that they are no longer required and are removed.

DEVELOPMENT HINTS

FEATURES

Get the highest priority feature from the Iteration backlog. Allow developers to choose

their work, don't assign it. The backlog can be updated mid-iteration if critical changes are

required.

DEVELOP

Agile also makes some suggestions on improving the development process. These are;

 Pair Programming: Two developers working together, the first as a coder and the

other as a reviewer. These roles should change regularly, and the pairs themselves

should switch pairs each day

 Code Standards: A common coding style (Documentation, Names, Whitespace, etc)

 System Metaphor: All classes and functions should be named such that their

purpose is understood.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 44 of 89

COMMIT

Everyone must commit every day, and should never commit broken code. (Continuous

Integration)

TRANSPARENCY

Key to Agile is transparency between the product, the team and the customers.

Customers can:

 Attend scrums. However they should not talk. Questions should be directed to the

Product Owner or Scrum Master. An alternative is to record the scrums and make

the recording available to the customer.

 See the product and iteration backlog in its current state.

 See the state of each task via a card wall or integrated dashboard.

 Access a test version of the software from the development environment.

TEST DRIVEN DEVELOPMENT

KEY POINTS

Tests are written by the Customer and Developer together and are written before the code.

Both automated unit tests and user acceptance tests should be written. There is no issue

with using standards such as IEEE 829 and IEEE1008 to document and write tests.

By using TDD, the team can prove how well a project is going and how close to completion.

This in turn, allows customers and product owner to make informed decisions about the

project.

TEST COVERAGE

The tests should cover;

 Software functions,

 Boundary cases,

 User interface,

 User experience,

 Non-functional components,

 Performance

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 45 of 89

TEST TYPES

There are 4 types of tests that can be written.

1. Defect

2. Functionality

3. Usability

4. Data

TDD IN DEVELOPMENT

FIGURE 18: TDD WORKFLOW

CONTINUOUS INTEGRATION

UNIT TESTING

Runs predefined tests to identify software defects

 Create tests for each class and function

 Create tests for all parameter combinations

 Create tests for all edge cases

 Create tests to examine the database for logical errors

 Create tests to detect interface defects (Selenium)

 Tests should be kept in the version control repository

 Test in a clone of the production environment

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 46 of 89

FIGURE 19: UNIT TEST SCREENSHOT

CODE STANDARDS

Inspect the developed code for deviations from the internal code standard

 Check for correct inline documentation (docblock)

 Check for correct variable naming conventions

 Check for correct whitespacing conventions

 Check for complex code that may require refactoring

 Check for incomplete or unused functions

FIGURE 20: CODE STANDARD SCREENSHOT

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 47 of 89

DOCUMENTATION

The following should be commented;

 Files

 Classes

 Functions

 Class Variables

 Complex Structures

Comments should contain;

 Description

 Author

 Usage

 Parameter description

 Return description

 References to other functions

 Copyright (file comments)

CODE COVERAGE

Calculate and display how much of the software is covered by unit tests. Aim for 80-90%

code coverage.

FIGURE 21: CODE COVERAGE SCREENSHOT

COMPILE

Run any compile or make scripts. All commits should compile.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 48 of 89

SCRUM MEETING (AKA DAILY STAND-UP)

The purpose of the daily stand-up meeting is to provide a consistent focus on incremental

progress and delivery demonstrated to the Product Owner. It is intended to be informative

and interactive and align the team’s understanding of what is being worked on, by whom

and its current status.

This meeting consists of the Product Owner, Scrum Master, and the project team and is

time-boxed to 15 minutes.

All participants should answer the following three questions:

1. What did you achieve yesterday?

2. What will you achieve today?

3. What impediment may prevent you from achieving your goal today?

It is the objective of the BI Scrum Master to remove any impediment identified by the

team.

FIGURE 22: DAILY STANDUP WORKFLOW

Projects with multiple teams should hold a scrum of scrums, also timeboxed to 15 minutes,

after the initial scrums. This meeting should bring together Scrum Masters from multiple

teams to answer the same 3 questions as before, but relating to their teams.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 49 of 89

INSPECTION

PROJECT VELOCITY

Project Velocity is a measure that determines the capacity and resulting output from the

project team over time. In this case it refers to how many user stories the project team

estimate that they can deliver in the project.

The methods available to determine Project Velocity are as follows:

 Use historical values - this assumes similarity between previous user stories in

terms of relative size, data, infrastructure etc

 Run an Iteration – derive the estimate based on observed Velocity over 2-3

Iterations

 Make a forecast – this approach is used where we do not have existing historical

values and it is not feasible to run several Iterations to observe the team’s velocity.

User stories are disaggregated and estimated at a task level.

The scope of the project, any changes to the scope, and the planned and actual delivery of

user stories can be represented in a burndown or burnup chart. This chart can also be

used to forecast when the project team will have completed all the user stories in the

Project Backlog.

ITERATION VELOCITY

Effort based Velocity determines the capacity and resulting output from the project team

for a given Iteration i.e. how many user stories can be delivered over the next two weeks.

This velocity can be calculated as an average at the team level, or if there is a significant

variation in the working hours as an aggregate of the individuals.

Iteration velocity is measured in terms of Potential and Forecast capacity:

 Potential Iteration Velocity is the sum of allocated working hours for the project

team

 Forecast Iteration Velocity is the estimated productive workable hours that can be

attributed to Iteration tasks i.e. takes into account Staff Overhead

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 50 of 89

BURNDOWN & BURNUP CHARTS

FIGURE 23: EXAMPLE BURNDOWN CHART

Burndown and Burnup charts help managers and customers to view progress against the

release, improve future estimates and identify problem trends early. The Burndown (or

burnup) chart should be available to everyone involved in the project.

FIGURE 24: EXAMPLE BURNUP CHART

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 51 of 89

PROGRESS PROBLEMS

All about risk mitigation

DISCOVERY

FIGURE 25: PROBLEM BURNDOWN (DISCOVERY)

Issues identified after the iteration begins or refined estimation after the iteration begins.

Watch the progress carefully. If necessary review the tasks in the Iteration

SCOPE CREEP

FIGURE 26: PROBLEM BURNDOWN (SCOPE CREEP)

Tasks are being added mid-release. Identify who is adding tasks and stop this behaviour.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 52 of 89

PLATEAU

FIGURE 27: PROBLEM BURNDOWN (PLATEAU)

Features are more difficult than estimated or unexpected staffing issues. Review the tasks

in the iteration.

TOO MANY FEATURES

FIGURE 28: PROBLEM BURNDOWN (TOO MANY FEATURES)

Features are more difficult than estimated. Review the estimation process and remove

tasks from the iteration.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 53 of 89

TRACKING EPICS

FIGURE 29: PROBLEM BURNDOWN (TRACKING EPICS)

Individual stories are too large and difficult to track. Keep each task under 1 day of work.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 54 of 89

FINISHING AN ITERATION

‘Fall seven times. Stand up eight.’

Old Japanese Proverb

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 55 of 89

ITERATION REVIEW

After the Iteration, the Scrum Master should hold an Iteration Review meeting to

demonstrate to the Product Owner and Customer (if different) the completed user stories

for final review for release to production. As the Product Owner should have been

involved in the development and verification process on a daily basis this step should be

straightforward.

The participants for this session are as follows:

 Product Owner

 Scrum Master

 Project Team

During the meeting the team should:

 Present the completed work to the Product Owner

 Review the work that was completed

 Review the work that was not completed. The user stories that were not completed

may move to the next Iteration.

FIGURE 30: ITERATION REVIEW

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 56 of 89

KAIZEN AND THE ITERATION RETROSPECTIVE

After the Iteration Review, the Scrum master should hold an Iteration Retrospective

meeting to discuss and improve on the Iteration process itself. During this meeting the

team should;

1. Reflect on the iteration

2. Make any process improvements

3. Discuss what went well during the iteration

4. What could be improved during the iteration

The Iteration Retrospective provides the team with the opportunity to reflect on the

Iteration just completed and drive continuous process improvement out of the learning’s

taken from this.

FIGURE 31: ITERATION RETROSPECTIVE

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 57 of 89

REFERENCES

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 58 of 89

BOOKS & LINKS

Directing the Agile Organisation – Evan Leybourn

Agile Estimating and Planning - Mike Cohn

Managing Agile Projects - Kevin J. Aguanno

http://en.wikipedia.org/wiki/Agile_software_development

http://agilemanifesto.org/

http://en.wikipedia.org/wiki/Agile_testing

http://en.wikipedia.org/wiki/Scrum_(development)

http://www.ambysoft.com

http://en.wikipedia.org/wiki/Iterative_and_incremental_development

http://en.wikipedia.org/wiki/Agile_software_development

http://www.agileadvice.com/

http://en.wikipedia.org/wiki/IEEE_829

http://www.ddj.com/architect/201202925?pgno=4

http://www.scrumalliance.org

TOOLS

http://trac.edgewall.org/

http://watir.com

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 59 of 89

SUPPORTING MATERIAL – EXAMPLE RELEASE AND TEST

MANAGEMENT PLAN

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 60 of 89

Design Document

Requirements
Gathering

Includes Produce Owner
discussions during the previous

release

Development
Design Meeting

Release Design
Document

Includes Testing Document

PO Signoff
Development

Update Meeting

Create Tasks in
Trac & Assign to

Developers
No Yes

Development

Includes Daily Scrums & DEV updates

Mid-Cycle
Requirement

Code FreezeTesting

Tests Pass

Priority FixResolve Issues
Release Approval

Document

PO Signoff

Uncompleted
Tasks

Add Uncompleted
Tasks to Next

Release

Release to
Production

Design Document
Appendices

No

Yes

Yes

No

Yes

Yes

No

No

Release Design
Document

Appendices

Yes

External
Announcements

Post Production
Testing

Tests PassNo

Migrate DEV to
TEST

Rollback

SCHEDULE OF ACTIVITIES & DESCRIPTION OF THE APPROVAL PROCESS

This is an example process for a monthly iteration cycle.

 Requirements

 Documentation

 Product Owner Processes

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 61 of 89

Process Description Timeframe Responsible

Design Document The base design document. This outlines all baseline
features in <Product> when initially released.

Complete Technical
Lead

Requirements
Gathering

Requirements are drawn from user and product owner
feedback during the previous months. The priorities are
set by the product owner which leads to the
development design meeting.

Ongoing Technical
Lead

Development Design
Meeting

A half day meeting of the development team to discuss
the requirements and to decide on the resources and
timeframes involved.

Day 1 Development
Team

Release Design
Document

A formal document outlining the features that will be
developed during the next sprint. Not all requirements
(from step 1) will be part of the release.

Day 1-2 Technical
Lead

Product Owner
Signoff?

Does the product owner approve the design document? Day 2 Product
Owner

Development Update
Meeting

A short meeting of the development team to resolve any
design issues raised by the Product Owner and hindering
signoff.

Day 2 Development
Team

Create Tasks in
management system &
Assign to Developers

After the design document is complete, the features are
broken down into short tasks and assigned to developers
to complete.

Day 3 Technical
Lead

Development The development of <product>. Progress is measured
through daily scrums and review of the tasks.

Updates to <product> are regularly migrated to the DEV
server. Issues in newly developed code are added as
defects.

Approximately
20 days

Development
Team

Mid-Cycle
Requirement
Gathering

These are high priority requirements, drawn from user
and product owner feedback during the development,
and form part of the current release cycle.

 Product
Owner

Release Design
Document Appendices

Appendices to the formal design document outlining any
mid-cycle requirements.

 Technical
Lead

Code Freeze No new features can be developed during this release
cycle. The developers will continue to work on
defects/bugs in <product>. Any requirements from the
design document which are incomplete are moved to the
next release.

Day n-5 Technical
Lead

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 62 of 89

The product owner can choose to extend the current
release cycle if the requirements warrant it.

Migrate DEV to TEST Migrate all changes from the DEV server to the TEST
server for formal testing

Day n-5 Development
Team

Testing <product> testers run the base test cases and any new
test cases to identify issues and defects in the current
release.

Day n-5 Testers

Tests Pass? Were the tests successful? Day n-5 Testers

Priority Fix? Are the issues raised in testing minor, and can they be
delayed until the next release?

Day n-5 Technical
Lead

Resolve Issues Any issues or defects for the current release are resolved
by the developers, which then get re-tested.

Day n-3-4 Development
Team

Release Approval
Document

A document based on the initial design document which
outlines all completed features in the current release.

Day n-2 Technical
Lead

Uncompleted Tasks? Are there any features from the original design
document which could not be completed in the current
release?

Day n-1 Technical
Lead

Add Uncompleted
Tasks to Next Release

To form part of the next design document. Day n-1 Technical
Lead

Product Owner
Signoff?

Does the product owner approve the current release Day n-1 Product
Owner

External
Announcements

Send an email to all <product> users describing the new
changes to <product> with the updated user manual.

Day n-1 Technical
Lead

Backup Current
Production

Make a manual backup of the current production
release. This is used if the system needs to rollback after
the release.

Day n-1 CIO Division

Release to Production Migrate the changes from TEST to PROD Day n CIO Division

Post Production
Testing

Run through a series of tests to ensure the production
release was successful.

Day n Testers

Test Pass? Were the post production tests successful? Day n Testers

Rollback Revert PROD to previous release. Day n CIO Division

Design Document
Appendices

Appendices to the base design document outlining the
changes to <product> that were made in the current
release.

Day n+1 Technical
Lead

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 63 of 89

ROLES, RESPONSIBILITIES AND RESOURCE REQUIREMENTS

Name Role Responsibility
<Name> Product Owner Final approval for release

<Name> Technical
Manager

Sign off of issues / tasks within the scope of the
release

<Name> Scrum Manager Manage the daily scrum and monthly design meeting

Testers (Various) Tester Follow test cases to identify issues. Can pass/fail cases
at their discretion

<Name> Infrastructure
Lead

Maintaining the Development, Test, and Production
hardware
Install software onto Production hardware
Run post-release deployment tests to confirm
successful deployment

Formal testers must have had training in using <product>, but should not be “power

users”. That is, highly skilled users often miss the usability issues that a “casual user” can

identify. For the same reasons, software developers cannot be testers.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 64 of 89

ROLL BACK STRATEGY

Rollback occurs if the post-production testing identifies any major issues. It is for this

reason that post-production testing occurs as soon as possible after the migration from

TEST to PROD. The process is as follows;

1. Take a complete backup of the current production application. This includes the

application data, and the database.

2. Migrate the new version from the Test server to the Production server.

3. Post-Production testing runs through a series of tests to ensure the production

release was successful. These tests include;

a. Comprehensive tool testing to ensure each tool operates as expected.

b. Speed testing to ensure that each tool (specifically mapping and charting)

are responsive within the allowed times.

c. Authentication testing to ensure that administrators and normal users can

access <product> appropriately.

d. Data quality testing to ensure that the <product> database was updated

correctly.

4. If the tests did not pass, and the issue can’t be resolved quickly in-situ, begin the

rollback process;

a. Obtain permission from the Product Owner to rollback.

b. Replace the new version of <product> with the recent backup, including

application data, the mapping files and the database.

c. Email all <product> users informing them of an issue and that the expected

upgrade will take place at a later time.

d. Review the issues with the Product Owner and Development Team to

identify what caused the issue and why it was not picked up in initial testing.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 65 of 89

TESTING METHODOLOGY

TEST DRIVEN DESIGN METHODOLOGY

The <product> testing methodology is based on “Test Driven Design Methodology” (TDD),

which is part of the Extreme Programming practices. The core of the methodology is that

the basic tests are developed before the software is written.

Write Test Cases Write Code

Yes

No

Test Passes

A major part of TDD is “Unit Testing”, a series of automated tests which thoroughly search

for logical errors in the software whenever a function is completed. These tests are

constantly built on previous tests so if something developed six months ago suddenly

breaks under a new update, it is known immediately.

See http://www.developer.com/design/article.php/3622546 for more information

TESTING DETAILS

Testing is performed by <who> staff. These are people who are familiar with the system,

but are not involved in the development process.

When a release is scheduled all current test cases are loaded into the issue management

system by the Technical Lead. These test cases are assigned to the testers on a random

basis and each tester is given a short session discussing what changes have been made and

what they should expect.

As each test is completed, the tester updates the test case as either “passed” or “failed”.

Failed tests are reviewed by the Technical Lead who either accepts the failure or assigns a

defect to a developer to resolve the issue. Once resolved the failed test case is reassigned

to the original tester to re-test.

Further information can be found under the “Test Report Template” section of this

document.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 66 of 89

TEST TYPES

There are four forms of tests which are run.

1. Defect Testing - Are there any bugs or defects that have been missed?

2. Functionality Testing - Does the release meet the original requirements

specification?

3. Usability Testing – Is the release user friendly?

4. Data Testing – Is the data in <product> reasonable and suitable as a policy evidence

base?

MANUAL TESTING

All tasks in <product> are managed using a test management tool, including test cases.

Each test case is linked to a category and a milestone in which to complete it (e.g. May

Release). These test cases are then assigned to a tester to run and go through the following

workflow;

 New (Test cases are created)

 Assigned (Test cases are assigned to a tester)

 Tested (Test cases have been run and are awaiting review)

o Failed test cases go back to assigned once the underlying issue is resolved.

 Closed

AUTOMATED TESTING (UNIT TESTS)

The continuous integration environment runs unit tests for every software update and

informs the developers if they have introduced a new defect. If a unit test fails, the

responsible developer is notified immediately and the update is removed from the current

version until is passes.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 67 of 89

MAPPING BETWEEN THE TEST SCRIPTS AND THE REQUIREMENTS

As per the development process, basic test cases are developed during the initial design

phase. These test cases are further refined during the development cycle as specific

functionality is created. This process ensures a close mapping between the test scripts and

the requirements.

Test Case

Catalogue

Release Design Document

Release Design

Document

Release Test

Cases

Release Test Run

Add to Test Case

Catalogue

Development

Update Test

Cases

There are two exceptions to this process.

1. Tests developed prior to this process. These tests form part of the catalogue to

ensure good coverage of the test scripts.

2. Core tests that relate to underlying functionality. Underlying functionality is a

product of the design process, and does not map to a design requirement.

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 68 of 89

TEST REPORT TEMPLATE

There are 6 details that make up a test case.

1. Reported By: Who is managing the test case? This person is responsible for verifying

the result and managing the resolution of any issues arising from failed test cases.

2. Owned By: Who is the test cases assigned to?

3. Priority: How important is this test case?

4. Milestone: Which release is this test case for? Each Milestone in Trac is a monthly

release.

5. Component: What part of <product> is the test case for?

6. The description of the test. This is broken into numbered steps. There can be many

verifications in a single test, and if any of them fail the entire test fails.

Note that test cases don’t use time estimation.

SAMPLE TEST CASES

These testcases are written by the developers and loaded into the tracking system during

each testing period.

Summary Test

<Test Summary> 1. Log in to <product>
2. Select <something>
3. Verify <results>

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 69 of 89

SUPPORTING MATERIAL – EXAMPLE HIGH-LEVEL

BUSINESS REQUIREMENTS

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 70 of 89

GLOSSARY OF TERMS

Term Definition
<Term> <Definition>

INTRODUCTION

OBJECTIVE

<What Is The Objective Of This Product>

NEED/PURPOSE

<What Need Or Purpose Does It Fulfil>

USAGE

<Who Is The Target Audience / Who Is Allowed To Access The Product>

SCOPE OF REQUIREMENTS SPECIFICATION

INCLUSIONS

<What Is Included In The Specification>

EXCLUSIONS

<What Is Not Included In The Specification>

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 71 of 89

FUNCTIONAL REQUIREMENTS

GENERAL

ID Requirement description Essential
or
Desirable

1 Essential

REPORT GENERATION & PRINTING (INCLUDING MANAGEMENT INFORMATION)

ID Requirement description Essential
or
Desirable

1 Essential

HELP FACILITIES

ID Requirement description Essential
or
Desirable

1 Online help will be available Essential

2 Context sensitive help for users Desirable

3 Tooltips will appear on mouse-over of objects Essential

4

SYSTEM MANAGEMENT

ID Requirement description Essential
or
Desirable

1 Desirable

NON-FUNCTIONAL REQUIREMENTS

GENERAL

ID Requirement description Essential
or
Desirable

1

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 72 of 89

SECURITY

ID Requirement description Essential
or
Desirable

1 The product will adhere to Open Web Application Security Project
(OWASP) standards and guidelines

Desirable

2

AVAILABILITY

ID Requirement description Essential
or
Desirable

1 Core operating hours 8am to 6pm, Monday to Friday Essential

2 99% availability during core operating hours Essential

3 Any planned maintenance is expected to be carried out outside
these hours

Essential

4 Monthly reports provided on the amount of downtime/uptime Essential
5

USER ACCESS

ID Requirement description Essential
or
Desirable

1

ACCESSIBILITY

ID Requirement description Essential
or
Desirable

1 The product will adhere to World Wide Web Consortium (W3C)
accessibility standards and guidelines

Essential

2

USABILITY

ID Requirement description Essential
or
Desirable

1 Desirable

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 73 of 89

IT SERVICE CONTINUITY (DISASTER RECOVERY)

ID Requirement description Essential
or
Desirable

1 A disaster recovery process will be in place. The system will be able
to be recovered and available within 48 hours of a disaster event.

Desirable

2

PERFORMANCE

ID Requirement description Essential
or
Desirable

1 Response times for users will be 4 seconds maximum response to
all web pages.

Desirable

2

CAPACITY/VOLUME

ID Requirement description Essential
or
Desirable

1

INTEROPERABILITY

ID Requirement description Essential
or
Desirable

1

DATA

ID Requirement description Essential
or
Desirable

1

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 74 of 89

AUDIT

ID Requirement description Essential
or
Desirable

1

REQUIREMENTS IMPOSED BY SPECIFIC LEGISLATION STRATEGIES

GENERAL

ID Requirement description Essential
or
Desirable

1

PRIVACY

ID Requirement description Essential
or
Desirable

1

CONSTRAINTS

Id Description
1 Developer resource limits.

2 The product will be a web application and as such the interface needs to be compliant
with standard web browsers including but not limited to Internet Explorer 6 & 7 and
Mozilla Firefox

3 Compliance with OWASP and W3C standards. This constraint is self-imposed. Refer to
sections 3.2.2 and 3.2.4.

4 Due to web standards and accessibility the interface is constrained to HTML, CSS and
JavaScript

5

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 75 of 89

ASSUMPTIONS

Id Description
1

RISKS

Id Description

1

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 76 of 89

SUPPORTING MATERIAL – EXAMPLE TECHNICAL

ARCHITECTURE

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 77 of 89

CONCEPTUAL SYSTEM DESIGN SECTION

Conceptual System Checklist Responses - Select all that apply

Project Type New System
 Upgrade System
 Other (specify):

Development Approach Commercial Off The Shelf (COTS)
 Government Off The Shelf (GOTS)
 Custom

Delivery of Functionality Modular (functionality delivered over time)
 Monolithic (functionality delivered all at once)

System Interactions Business to Business (B2B)
 Business to Customer (B2C)

Electronic Commerce Yes
 No

Pilot Prior to Implementation Yes
 No

Security - Regulatory or Privacy
Requirements

W3C Accessibility Compliance Yes
 No

Estimated Total Number of
Customers

Total:
By Audience:
Customer: ______ Employee: _____ Business:_____
Other:______

Estimated Total Number of
Concurrent Customers

Total:
By Audience:
Customer: ______ Employee: _____ Business:_____
Other:______

Average Transaction Response
Time Requirements

Platform: Windows XP Pro, PIV 1.2Ghz, 512MB RAM
Bandwidth: DSL/Cable (1Mb, 50% utilized)
Average File Size: ____

Platform: Windows XP Pro, PIV 1.2Ghz, 512MB RAM
Bandwidth: LAN (10Mb, 50% utilized)
Average File Size: 30Kb

Production Hours of Operation

Production Availability Uptime => Downtime/year (i.e. unplanned)

http://www.w3.org/TR/WCAG20/

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 78 of 89

Expectations 99% (2 Nines) => 003d 15h 36m 00s

Application Backup Requirements Full Backup:
__ Real Time __ Daily __ Weekly
Incremental Backup:
__ Hourly __ Daily __ Weekly

Application Recovery Requirements Recovery Time Objective:

Disaster Recovery Requirements Hot Site: __ hour(s)
Warm Site: __ days(s)
Cold Site: __ days(s)

Hosting Location
Architectural Approach SOA

 3/N Tier
 Other (specify):

Processing Type OLTP
 OLAP
 Other (specify):

Development Platform J2EE
 .NET
 PHP
 Other (specify):

Architectural Framework(s)

Architectural Pattern(s) MVC
 Factory
 Controller
 Data Access Object
 Other (specify):

Software Testing Test Driven Design Methodology (TDD) - basic tests are
developed before the software is written.
Tests include;

 Functional
 Performance
 Accessibility
 User Acceptance

Security Technologies Identity and Access Management
 SSL/TLS
 Data Encryption
 Cookie Encryption
 __ DES __ 3DES __ AES __ Other (specify):
 Other (specify):

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 79 of 89

CONCEPTUAL SYSTEM DESIGN DIAGRAM

<Insert Physical Architecture Diagram>

<Descript Physical Architecture Diagram>

DETAIL SYSTEM DESIGN CHECKLIST

Detail System Checklist Responses – Select all that apply

Client Operating Systems Apple
 Microsoft
 Linux
 Unix
 Palm
 Microsoft PocketPC
 Other (specify):

Client Platforms Desktop/Laptop
 Tablet
 PDA
 Smart Phone
 Other (specify):

Client Footprint by Platform Specify size of footprint in KB or MB:
Desktop/Laptop:
Tablet:
PDA:
Smart Phone:
Other (specify):

Client Connection Speed Specify speed in kbps or mbps:
Minimum:
Recommended:

Client Richness Browser Based
 Rich Client
 Rich Internet (AJAX)

Browsers and Versions Supported Internet Explorer:
 Mozilla Firefox:
 Safari:
 Opera:

Presentation - Client Side
Languages

 HTML
 DHTML

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 80 of 89

 XML
 XHTML
 VB.NET
 C#
 ActiveX Controls
 Java Applets
 Java
 JavaScript
 VBScript
 C++
 Other (specify):

Application State Cookies (Non-Persistent Cookies, Persistent
Cookies)

 Session Ids
 State Stored in Hidden Fields
 Other (specify):

Virtualization Server
 Storage

Web Server Location Public Facing
 Internal Facing

Web Server Operating System Windows
 Linux
 Unix
 Other (specify):
 Specify Version:

Web Server Software Apache
 Microsoft
 Sun
 Oracle
 Other (specify):
 Specify Edition and Version:

Web Server - High Availability Load Balanced: __ Yes __ No
Processor Architecture: __ 64 Bit __ 32 Bit
Processor Cores: __ Double __ Single
Other (specify):

Web Server - Specifications Rollout Configuration:
 Number of Servers: __ CPUs/Server: __ CPU Type:

 CPU Speed: _____ Amount of RAM: ____
Maximum Configuration:

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 81 of 89

 Number of Servers: __ CPUs/Server: __ CPU Type:

 CPU Speed: _____ Amount of RAM: ____

Presentation – Server Side
Languages

 ASP.NET
 VB.NET
 C#
 PHP
 JSP
 Servlets
 Java
 Server Side Includes (SSI)
 C++
 Other (specify):

Application Server Operating
System

 Windows
 Linux
 Unix
 Other (specify):
 Specify Version:

Application Server Software Microsoft
 IBM
 Sun
 Oracle
 BEA
 Other (specify):
 Specify Edition and Version:

Application Server – High
Availability

Processor Architecture: __ 64 Bit __ 32 Bit
Processor Cores: __ Double __ Single
RAID Supported: __ Yes __ No
SAN Supported: __ Yes __ No
Mirroring Supported: __ Yes __ No
Clustering Supported: __ Yes __ No
Grid/On Demand Supported: __ Yes __ No
Other (specify):

Application Server - Specifications Rollout Configuration:
 Number of Servers: __ CPUs/Server: __ CPU Type:

 CPU Speed: _____ Amount of RAM: ____
Maximum Configuration:
 Number of Servers: __ CPUs/Server: __ CPU Type:

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 82 of 89

 CPU Speed: _____ Amount of RAM: ____

Business Rule – Application
Languages

 VB.NET
 C#
 PHP
 Java (J2SE)
 Java/EJB (J2EE)
 C++
 Other (specify):

Database Server Operating System Windows
 Linux
 Unix
 Other (specify):
 Specify Version:

Database Server Software Microsoft
 IBM
 Oracle
 PostgreSQL
 MySQL
 Other (specify):
 Specify Version:

Database Server – High Availability Processor Architecture: __ 64 Bit __ 32 Bit
Processor Cores: __ Double __ Single
RAID Supported: __ Yes __ No
SAN Supported: __ Yes __ No
Mirroring Supported: __ Yes __ No
Clustering Supported: __ Yes __ No
Grid/On Demand Supported: __ Yes __ No
Other (specify):

Database Server - Specifications Rollout Configuration:
 Number of Servers: __ CPUs/Server: __ CPU Type:

 CPU Speed: _____ Amount of RAM: ____
Maximum Configuration:
 Number of Servers: __ CPUs/Server: __ CPU Type:

 CPU Speed: _____ Amount of RAM: ____

Data Access – Connectivity
Methods

 ADO.NET
 ODBC
 OLE/DB
 JDBC

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 83 of 89

 JDO
 DB2 Connect
 Other (specify):

SQL Languages T/SQL
 PL/SQL
 Other (specify):

Stored Procedures Utilization No
Yes
 __ Data Access only
 __ Business Rules and Data Access

SYSTEM DESIGN DESCRIPTION

<Insert High Detail Physical Architecture Diagram>

<Describe High Detail Physical Architecture Diagram>

BUSINESS CONTINUITY

<Describe Business Continuity / Disaster Recovery Procedures In Place>

EXPECTED ISSUES

<Describe Issues Or Link To Issues Register>

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 84 of 89

SUPPORTING MATERIAL – EXAMPLE DESIGN PAGE

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 85 of 89

Story: __

Estimate

Priority

Value

Risk

Purpose Test Cases

Use Cases Notes

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 86 of 89

SUPPORTING MATERIAL – EXAMPLE RELEASE APPROVAL

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 87 of 89

RELEASE APPROVAL

Release Name: ___________________________________

Version: __

Date: ___

COMPLIANCE OUTCOME

Requirement Pass/Fail Notes

DEFECT TESTING OUTCOME

Name Pass/Fail Notes

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 88 of 89

PERFORMANCE TESTING OUTCOME

Name Pass/Fail Tests
(All results are the average of 10 loads at SSC
level)

 Single User
1000 Users

 Single User
1000 Users

 Single User
1000 Users

 Single User
1000 Users

 Single User
1000 Users

 Single User
1000 Users

 Single User
1000 Users

 Single User
1000 Users

ISSUES TO CARRY OVER TO THE NEXT RELEASE

Introduction to Agile Methods

Notes:

Introduction to Agile Methods (cc)-by-sa – Evan Leybourn Page 89 of 89

SIGN OFF

Technical Program Final

<Name> <Name> <Name>

