
Advanced SQL Testing with SQLServer

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 1 of 90

Advanced SQL Testing with
SQLServer

Student Guide

Advanced SQL Testing with SQL Server by Evan Leybourn is licensed
under a Creative Commons Attribution-ShareAlike 3.0 Australia
License <http://creativecommons.org/licenses/by-sa/3.0/au/>

Evan Leybourn
evan@theagiledirector.com
Twitter: @eleybourn

http://creativecommons.org/licenses/by-sa/3.0/au/
mailto:evan@theagiledirector.com

Advanced SQL Testing with SQLServer

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 2 of 90

OTHER WORKS BY

EVAN LEYBOURN

DIRECTING THE AGILE ORGANISATION –

BY EVAN LEYBOURN

http://theagiledirector.com/book

 Embrace change and steal a march on

your competitors

 Discover the exciting adaptive

approach to management

 Become the Agile champion for your

organisation

Business systems do not always end up the way that we first plan them. Requirements can

change to accommodate a new strategy, a new target or a new competitor. In these

circumstances, conventional business management methods often struggle and a different

approach is required.

Agile business management is a series of concepts and processes for the day-to-day

management of an organisation. As an Agile manager, you need to understand, embody

and encourage these concepts. By embracing and shaping change within your organisation

you can take advantage of new opportunities and outperform your competition.

Using a combination of first-hand research and in-depth case studies, Directing the Agile

Organisation offers a fresh approach to business management, applying Agile processes

pioneered In the IT and manufacturing industries.

http://theagiledirector.com/book

Advanced SQL Testing with SQLServer

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 3 of 90

TABLE OF CONTENTS

Other Works by Evan Leybourn .. 2

Directing the Agile Organisation – by Evan Leybourn ... 2

Table of Contents ... 3

1: Introduction ... 6

Examples Used in This Course ... 7

2: Phases of Database Design & Testing ... 9

Testing Phases .. 10

Data Modelling ... 10

Entity-Relationship (ER) Model .. 11

Entities and Entity Sets ... 12

Attributes .. 13

Primary Keys .. 13

Foreign Keys ... 15

Relations ... 16

The Relational Data Model ... 18

Correctness of Designs .. 18

3: SQLServer (Database Management Systems) ... 21

Constraint Checking ... 22

Accessing Data ... 23

Information Schema .. 23

Transactions and Concurrency .. 24

Accessing and Testing Databases .. 25

4: SQL ... 26

Structured Query Language ... 27

SQL Data Types (Domains) ... 28

Advanced SQL Testing with SQLServer

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 4 of 90

SQL Operators .. 28

Numeric Types ... 29

String manipulation ... 31

Date and Time Manipulation ... 32

Aggregations .. 33

NULL Operators ... 33

Other Data Types ... 34

User-defined Data Types ... 34

SQL Data Definition Language ... 34

Defining a Database Schema ... 35

Primary Keys in SQL ... 35

Foreign Keys in SQL .. 36

Other Attribute Properties ... 37

Queries ... 37

Multi-relation SELECT Queries ... 38

Joins .. 39

JOIN ON .. 39

OUTER JOIN .. 39

Subqueries ... 40

Union, Intersection, Difference ... 41

ORDER BY ... 41

GROUP BY ... 42

Data Modification in SQL ... 42

Data Insertion .. 43

Data Deletion ... 43

Updates .. 44

Changing Tables ... 44

Indexes ... 45

Views .. 45

5: Domains, Stored Procedures and Triggers ... 47

Programming with SQL .. 48

Functions and Stored Procedures ... 48

T-SQL .. 49

Variable Types .. 49

Return Types .. 49

Advanced SQL Testing with SQLServer

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 5 of 90

Syntax ... 50

Invoking a Function or Stored Procedure ... 51

Exception Handling .. 51

Dynamically Generated Queries .. 52

Triggers ... 52

Worked Examples .. 53

Create_Bank.sql .. 54

Queries – Creating a Database .. 58

Queries – SQL ... 61

Stored Procedures ... 80

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 6 of 90

1: INTRODUCTION

‘On two occasions I have been asked, “Pray, Mr Babbage, if you put into the

machine wrong figures, will the right answers come out?” [...] I am not able rightly

to apprehend the kind of confusion of ideas that could provoke such a question.’

Charles Babbage, 1864

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 7 of 90

EXAMPLES USED IN THIS COURSE

All examples in this course use the imaginary “Community Bank” database. The Community

Bank database stores information about the staff, customers, accounts, loans and

branches used by a hypothetical bank. Branch details consist of the branch name and

location. Staff details consist of the name, position within the organisation and what

branch that a hypothetical employee of the Community Bank works at.

Customer details stored include the customer name, gender, date of birth and their local

branch. Each customer can have one or more accounts – details of banking transactions

are stored against accounts.

COMMUNITY BANK SCHEMA

CREATE TABLE Staff (

 staff_id INT IDENTITY(1,1) PRIMARY KEY,

 given_name VARCHAR(50),

 family_name VARCHAR(50),

 role VARCHAR(50)

)

CREATE TABLE Branch (

 name VARCHAR(50),

 location VARCHAR(50),

 manager INT REFERENCES Staff

 ON DELETE SET NULL

 ON UPDATE CASCADE,

 CONSTRAINT branchpk PRIMARY KEY (name)

)

CREATE TABLE WorksAt (

 branch_id VARCHAR(50) REFERENCES Branch

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 staff_id INT REFERENCES Staff

 ON UPDATE NO ACTION

 ON DELETE NO ACTION,

 CONSTRAINT worksatpk PRIMARY KEY (branch_id, staff_id)

)

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 8 of 90

CREATE TABLE Customer (

 customer_id INT IDENTITY(1,1),

 given_name VARCHAR(50),

 family_name VARCHAR(50),

 gender CHAR(1),

 dob DATE,

 age INT,

 branch_id VARCHAR(50) REFERENCES Branch

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 CONSTRAINT customerpk PRIMARY KEY (customer_id)

)

CREATE TABLE Account (

 account_id BIGINT IDENTITY(1,1) PRIMARY KEY,

 customer_id INT REFERENCES Customer

 ON UPDATE NO ACTION

 ON DELETE NO ACTION,

 balance NUMERIC CHECK (balance > 0),

 opened_by INT REFERENCES Staff

 ON UPDATE NO ACTION

 ON DELETE NO ACTION

)

CREATE TABLE Transactions (

 account_id BIGINT REFERENCES Account

 ON UPDATE NO ACTION

 ON DELETE NO ACTION,

 transaction_amt NUMERIC,

 date DATETIME

)

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 9 of 90

2: PHASES OF DATABASE DESIGN & TESTING

‘So Mr Edison, how did it feel to fail 10,000 times?’

‘Young man, I didn’t fail, I found 9,999 ways that didn’t work’

Thomas Edison, anecdotal (on his invention of the incandescent light)

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 10 of 90

TESTING PHASES

Depending on the complexity of the data and business rules involved, testing a database

application can be a complicated process. Testing at each stage of the development

process eases this complexity.

Six phases of database development commonly used in the industry are:

1. Requirements analysis to identify data and operations

2. Data modelling

3. Database schema design to design detailed tables and entities

4. Database implementation to create instance of schema

5. Build operations and interface (SQL, stored procedures, GUI)

6. Performance tuning

These map roughly to phases in many common project management approaches;

however, they should not be mistaken as such – these are purely from the point of view of

database developer.

DATA MODELLING

WHAT IS DATA MODELLING?

Data modelling is a process to describe the information that should be contained in the

database and the relationships between this information. It is also used to describe any

constraints and restrictions on the data.

As a banking database, the Community Bank stores information such as customer records

and customer accounts. Each account record is related to a customer record, since each

customer holds an account.

Constraints that may be placed on the data can include 7 digit customer ids and

reasonable dates of birth.

MODELLING OUTCOMES

Agreed user and design requirements focus the modelling process. The aim of which is to

create a (semi) formal description of the database structure. There are two types of data

models, both of which need to be validated against the user requirements;

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 11 of 90

1. Logical models which represent the conceptual structure of the data. These models

are created from the user requirements and need to be validated against business

need.

2. Physical models which represent the physical layout of data and need to be tested

for performance and data integrity. Underlying defects identified at this stage will

significantly improve development and testing in later stages.

ENTITY-RELATIONSHIP (ER) MODEL

The ER Model (or ER diagram) is the most common modelling method for database design.

The ER model represents the data as a collection of interrelated entities. It is a notation for

describing entities and their relationships.

It is also very simple to understand and

validate, representing the information in an

abstract and graphical form, which allows

clients and developers to both use the

model to understand the design.

This modelling method has existed for

almost 40 years. The form of Entity

Relationship Diagrams has never been

standardised; though some loose attempts

have been made (the class diagram in

Unified Modelling Language, for example,

and the ICAM Definition Languages). As a

result, many variations do (unfortunately) exist. Common variations involve relationship

cardinalities (which will be covered later) and Object Oriented (OO) extensions (which

won't).

ER diagrams are a graphical tool for data modelling. An ER diagram consists of:

 The definitions of each entity set

 The definitions of each relationship set

 The attributes associated with each entity set and

 The connections between entity and relationship sets

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 12 of 90

ENTITIES AND ENTITY SETS

Each entity is described by a collection of attributes that describe it.

The customer table.

 Family Name: Smith

 Given Names: Jenny

 DOB: 01-Jan-1970

 Gender: Female

The branch table.

 Name: Canberra City

 Location: Canberra

An entity set is a collection of entities with the same attributes. It should be noted that 99%

of the time we say "entity" when we mean "entity set" and we say "relationship" when we

mean "relationship set".

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 13 of 90

ATTRIBUTES

Each attribute in an ER diagram has a name (which appears on the ER diagram) and is

associated with an entity or relationship set. Attributes are assigned types (domains) which

constrain the data allowed within the attribute.

NULL VALUES

Attributes may contain a null (or empty) value to indicate that the attribute is not relevant,

or that the value of the attribute is unknown for a particular entity.

Renae is under 18 years old and will not have a credit card number. We also do not

know her mobile phone number, so both of these values will be NULL.

COMPUTED (OR DERIVED) ATTRIBUTES

Derived attributes contain values that are calculated from other attributes. The rules of

which need to be thoroughly tested to ensure data integrity. It needs to be understood that

persisted computed columns are calculated on insert, and non-persisted computed

columns are calculated on select. This may have implications for testing, both in terms of

accuracy and performance.

A person's age is be calculated by subtracting the year of their birth from the

current year.

Most databases have a large number of available functions for each data type which will be

discussed later in this course.

PRIMARY KEYS

In order to identify an individual entity within an entity set, each entity must contain an

attribute which is unique, or a series of attributes which, in combination, are unique.

Sometimes the nature of the data enforces uniqueness across one or more attributes

within an entity, and this/these can be used as a primary key. Unless there a very good

reasons for the contrary, all tables must contain a primary key.

Another approach to ensuring this uniqueness is to create a new attribute which contains a

guaranteed unique value for each entity in the entity set, and using this as the primary key.

This approach is commonly used .

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 14 of 90

The Community Bank branch entity uses the name of each Branch as a Primary Key,

as no two branches can have identical names.

However, as no attribute or combination of attributes in the Customer table can be

guaranteed to always be unique, a unique customer id is given to each row.

If the key is made from more than one attribute it is called a composite key. Keys are

indicated in ER diagrams by underlining the key attributes; it is also common to denote a

non-composite Primary Key with the symbol (PK).

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 15 of 90

FOREIGN KEYS

Given that a primary key is one or more attributes identifying a specific entity in an entity

set, a foreign key is one or more attributes identifying an entity in another entity set.

Foreign keys are critical in relational databases, they link individual relations into a

cohesive database structure.

They are also very important when querying data as they provide the basis for connecting

individual relations to assemble the results.

A customer’s address is stored in a special Address table. There are Foreign Keys

linking the Person table to the Address table.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 16 of 90

RELATIONS

A relationship is an association between two entities. Similarly, a relationship set is a

collection of relationships of the same type.

Customer(9876) holds Account(12345)

Customer(9877) holds Account(12346)

Customer(9878) holds Account(12347)

Customer(9878) also holds Account(12348)

etc.

CARDINALITIES

Cardinalities describe the number of entities that a given entity can be associated with

through a relationship.

One-to-One (1-1): Each X is associated with at most one Y and each Y is associated with at

most one X.

Every branch has one staff member as manager, and a staff member can only be a

manager for one branch.

One-to-Many (1-M): each X is associated with zero or more Y, each Y is associated with at

most one Y.

A customer can hold many accounts, but an account belongs to only one customer.

Many-to-Many (M-N): each X is associated with zero or more Y, each Y is associated with

zero or more X. M-N relationships usually degrade into a weak entity between the two

main entities. This will be covered later.

A staff member can work at many branches, and a branch has many staff working

there.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 17 of 90

FOREIGN KEY PARTICIPATION

Foreign Keys can be NULL, indicating that though a relationship is possible for a

generalised entity set, a specific entity does not have one. This means that the level of

participation in a relationship is another type of constraint. Participation can be total or

partial;

Total: Every X must have at least 1 Y

A customer must have an account to have a customer record at the Bank.

Partial: Every X can have 0 or more Y

An account may have no transactions on record, such as if it has just been opened.

WEAK ENTITY SETS

Weak entities exist only because of a relationship between two or more entities. They only

contain the keys of the “strong” entities and attributes directly relating to the relationship.

They do not have a separate primary key.

Staff members who work at a branch is a M-N relationship. We cannot store the

information about the relationship in either the Staff or Branch tables, so a WorksAt

table (containing the primary keys from the Staff table, matched against the

relevant primary keys of the Branch table) is created to store this data.

Likewise if a staff member does not work at a branch, there is no need to store any

information about it.

We can form a primary key for a weak entity by taking a combination of the primary keys of

the associated strong entities. In ER diagrams weak entities are denoted by double-boxes

and discriminators are denoted by dotted underline.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 18 of 90

THE RELATIONAL DATA MODEL

The relational data model has existed for over 30 years and has created numerous

database design methodologies. It has also helped to develop the standard database

access language, SQL.

The relational model is a mathematical theory; it has no "standard" and is based heavily on

set theory. There are thus two kinds of terminology in use:

 Mathematical: relation, tuple, attribute, etc

 Physical: table, record, field/column, etc

CORRECTNESS OF DESIGNS

In general, there is no single "best" design for any given application. If a model contains all

available data, relations and constraints it can be considered 'correct'. However, we may

describe a design as incorrect or inadequate if it:

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 19 of 90

 Omits some information that is meant to be modelled

 Contains redundant information, though this may be unavoidable

 Leads to an inefficient implementation

 Violates the rules of the chosen modelling method

For example; an initial data model did not store the balance of a customer’s accounts. It

also stored the customer name in both the Customer and Account tables. And because it

did not store the account balance, any balance check required it to be calculated from all

previous transactions.

A “correct” ER Diagram

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 20 of 90

An “incorrect” ER Diagram. Some of the issues within this ER diagram include;

 Meaningless tablename (t1)

 Incorrect type (Gender as date & balance as integer)

 Incorrect cardinality (1-M on the wrong side) between t1 & Accounts

 M-N relationship without weak entity between Staff & Branches

 Accounts entity without primary key

 Customer does not have a unique primary key

 Branches foreign key is not labelled

 Unclear label in Customer table (first name / surname rather than given / family)

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 21 of 90

3: SQLSERVER (DATABASE MANAGEMENT SYSTEMS)

 ‘It is always wise to look ahead, but difficult to look further than you can see.’

Winston Churchill, ~1960

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 22 of 90

CONSTRAINT CHECKING

When a process creates, changes or deletes a record, SQLServer checks that the new values

do not break the constraints against each attribute. As long as the constraints are

configured correctly, it is not necessary to test any of these elements. If any constraint is

not met, the operation is cancelled and any prior changes in the operation are rolled back.

TYPE CHECKING

Each attribute in a database is given a type (or domain). New and updated values must be

of the same type. No checking is done for deleted rows.

A person's date of birth is not allowed in the age field. Likewise the date of birth

must be a valid date. If this constraint is not met, the row will not be inserted or

updated.

PRIMARY KEY CHECKS

As each row in the database must have a unique primary key, new and updated values

must not occur elsewhere in the entity. No checking is done for deleted rows.

No two branches are allowed to have the same name.

REFERENTIAL INTEGRITY CHECKS

For attributes that are foreign keys, any new or updated values must exist in the parent

table. If an attempt is made to update or delete a record in a parent table then SQLServer

may:

 Abort the change and the user must find all referring entities and either remove

each one manually or change their foreign keys to an acceptable value.

 Remove or update all referring entities automatically.

ON DELETE/UPDATE CASCADE

 Set foreign key attributes to NULL in all referring entities.

ON DELETE/UPDATE SET NULL

Customer records are considered very important data, much more so than branch

data. So if the branch a customer belongs to is deleted from the database, the

branch_id attribute will be set to NULL.

branch_id INT REFERENCES Branch ON DELETE SET NULL

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 23 of 90

However if that same branch is deleted, the information describing staff working at

a branch is no longer important and can be deleted.

branch_id INT REFERENCES Branch ON DELETE CASCADE

ACCESSING DATA

Like all modern DBMSs, SQLServer provide access to the data via SQL. And while SQLServer

uses its own dialect of SQL (Transact-SQL or T-SQL), SQL:2011 is the current standard.

In SQLServer, SQL queries can be directly entered via an interactive shell, the SQLServer

Management Studio (SSMS). This interface is useful for administrative and debugging

purposes. Although, users would never be expected to use this shell.

APIs included in most programming languages, (Java, C, PHP, Python, etc) allow developers

to connect to and communicate with SQLServer from within their application. Users then

use the front-end application and remain blissfully ignorant of SQL or the database

backend.

SQLServer also provides various kinds of extensibility of the database such as views, stored

procedures and triggers.

INFORMATION SCHEMA

SQLServer also provides access to database metadata, or the catalogue. Metadata is

typically presented as collection of tables that can be queried as you would a standard

entity. This is available through the through the Information_Schema tables.

There are a variety of uses for this metadata, ranging from the simple to the complex.

Many test cases will use this metadata to do analysis of the data stored, and provide

statistics and other relevant information.

Software has also been written that takes advantage of the database metadata to create

simple CRUD (create, retrieve, update, delete) applications that generate a user interface

on the fly from nothing more than the database metadata.

INFORMATION_SCHEMA.CHECK_CONSTRAINTS

INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE

INFORMATION_SCHEMA.COLUMN_PRIVILEGES

INFORMATION_SCHEMA.COLUMNS

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 24 of 90

INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE

INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE

INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS

INFORMATION_SCHEMA.DOMAINS

INFORMATION_SCHEMA.KEY_COLUMN_USAGE

INFORMATION_SCHEMA.PARAMETERS

INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS

INFORMATION_SCHEMA.ROUTINE_COLUMNS

INFORMATION_SCHEMA.ROUTINES

INFORMATION_SCHEMA.SCHEMATA

INFORMATION_SCHEMA.TABLE_CONSTRAINTS

INFORMATION_SCHEMA.TABLE_PRIVILEGES

INFORMATION_SCHEMA.TABLES

INFORMATION_SCHEMA.VIEW_COLUMN_USAGE

INFORMATION_SCHEMA.VIEW_TABLE_USAGE

INFORMATION_SCHEMA.VIEWS

TRANSACTIONS AND CONCURRENCY

Often in application programming a single application-level operation or transaction

involves multiple DBMS-level operations. To faithfully represent the application-level

operation, either all DBMS-level operations must complete or all DBMS-level operations

must fail. If the transaction fails partway, any completed operations must be undone.

While, SQLServer should enforce this automatically, test cases need to be written to

validate these transactions.

When a customer withdraws money from their account, a financial transaction

record is created recording this information. One recorded the balance of the

customer’s account is reduced by the withdrawal amount. If the either of these

processes fail, the other process needs to be aborted to ensure all records are

correct (Data Integrity).

BEGIN TRANSACTION tran_name

 BEGIN TRY

 UPDATE Customer SET <FAILS>

 COMMIT TRANSACTION tran_name

 END TRY

 BEGIN CATCH

 ROLLBACK TRANSACTION tran_name

 END CATCH

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 25 of 90

MULTI-VERSION CONCURRENCY CONTROL

SQLServer uses Multiversion Concurrency Control (MVCC), when using

READ_COMMITTED_SNAPSHOT to ensure that users reading data do not need to wait for

users writing data to finish, and that the reads will always be accurate and complete.

When a user sends a SELECT query, SQLServer displays a snapshot, or version, of all the

data that was committed before the query began. Any data updates or inserts that are part

of open transactions or were committed after the query began will not be displayed.

ACCESSING AND TESTING DATABASES

Each programming language will have different syntax to connect to and communicate

with a database. However most follow a fairly similar process.

-- establish connection to SQLServer

db = dbConnect("dbname=X user=Y passwd=Z");

query = "SELECT a,b FROM R,S WHERE ... ";

-- invoke query and return result set

results = dbQuery(db, query);

-- for each tuple in result set

while (tuple = dbNext(results)) {

 -- do something

}

dbClose(results);

The application connects to the database with a username and password which returns a

connection (handle) to the database. This connection is used to send and receive data.

The test cases (or queries) are then composed and sent through the connection to the

database which returns a database result set. This result set can then be iterated through

to get each row of data.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 26 of 90

4: SQL

‘Make everything as simple as possible, but not simpler.’

Albert Einstein (paraphrased), 1933

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 27 of 90

STRUCTURED QUERY LANGUAGE

SQL stands for “Structured Query Language“ which is sometimes called "sequel".

SQL is an ANSI/ISO standard language for querying and manipulating relational databases.

It is designed to be a "human readable" language comprising data definition facilities,

database modification operations, relational algebra operations and aggregation

operations.

SQLServer implements a version of the SQL standard called Transact-SQL or T-SQL. This is

very similar to the SQL standard, but has a number of differences including the use of

FROM clauses in UPDATE & DELETE statements and the inclusion of TRY/CATCH blocks.

SQL SYNTAX

SQL identifiers and keywords are case insensitive though as a general rule write keywords

(SELECT, WHERE, CREATE) in upper case, relation names (Customer, Account) with an initial

upper-case letter and write attribute names (balance, dob) in all lower-case. Multi word

attribute names should be separated with an underscore (customer_id, family_name).

SQL KEYWORDS

There are 185 reserved words in T-SQL. A categorised list of the more frequently used

keywords:

Querying Defining Changing
SELECT CREATE INSERT

FROM TABLE INTO

WHERE VIEW VALUES
GROUP INDEX UPDATE

HAVING COLUMN SET

ORDER BY DATABASE DELETE

DESC KEY DROP
ASC PRIMARY ALTER

EXISTS FOREIGN BEGIN

IS REFERENCES END
NOT CONSTRAINT

NULL CHECK

IN UNIQUE
DISTINCT

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 28 of 90

AS

AND

OR
BETWEEN

ROLLBACK

CASCADE

COMMIT
JOIN

LIKE

SQL DATA TYPES (DOMAINS)

SQL supports a small set of useful built-in data types:

 Text string: “Hello World!”

 Numbers (Integers, Real): 123, 3.14

 Dates and Times: 13/05/1981, 10:00

 Boolean (Bit): 0, 1 (t, f)

 Bit-string or binary data

Basic type (domain) checking is performed automatically by SQLServer. The NULL value is

treated as a member of all data types. These do not need to be further tested.

Constraints can be used to enforce more complex domain membership conditions

depending on the requirements of the application.

SQL OPERATORS

When comparing data a series of default comparison operators are defined on all data

types.

 Less Than (<): 1 < 2

 Greater Than (>): 2 > 1

 Less Than or Equal To (<=): 2 <= 2

 Greater Than or Equal To (>=): 2 >= 2

 Equals (=): “Hello” = “Hello”

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 29 of 90

 Not Equals (!= or <>): 10:00 != 11:00

 Test for NULL value (IS)

 Test for false NULL value (IS NOT)

A common error that needs to be tested for is the use of:

= NULL

This is incorrect syntax and will lead to unexpected results. The correct syntax is:

IS NULL / IS NOT NULL

Boolean operators AND, OR, NOT are available within WHERE expressions to combine

results of comparisons. Most data types also have type-specific operations available (e.g.

arithmetic for numbers).

NUMERIC TYPES

There are different number types available in SQLServer. Each is appropriate for different

applications.

INTEGER (or INT), BIGINT, SMALLINT, TINYINT: 4/8/2/1 byte whole numbers.

REAL, FLOAT: 4/4-8 byte floating point (decimal) numbers.

NUMERIC: Exact decimal numbers. Slow but accurate, best used for currency calculations.

INCREMENTING

The T-SQL keyword IDENTITY specifies that a numeric type field is to be automatically

incremented when a new record is inserted. There are two parameters, the seed (or

starting number), and the increment size. For example;

user_id INT IDENTITY(1, 1);

This defines a field starting at 1 and incremented by 1 each time. Whereas;

user_id INT IDENTITY(10000, 3);

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 30 of 90

This defines a field starting at 10,000 and incremented by 3 each time. That is the second

row will be 10,003, the third 10,006, and so on.

COMMON FUNCTIONS

+ - * /: The standard operations

1+1 = 2

1-1 = 0

2*2 = 4

4/2 = 2

sin(x), cos(x), tan(x) etc: Trigonometric

sin(90) = 0.893996663600558

abs(x): The absolute value of x

abs(-1) = 1

ceiling(x): The small integer above x

ceil(4.5) = 5

floor(x): The largest integer below x

floor(4.5) = 4

power(x, y): x to the power of y

power(2, 3) = 8

sqrt(x): The square root of x

sqrt(4) = 2

round(x, y): x to y decimal points

round(3.14159265359, 2) = 3.14

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 31 of 90

random(): Between 0.0 and 1.0

random() = 0.341076350305229

STRING MANIPULATION

There are three different text or string types available in SQL Server. Each is appropriate

for different applications.

CHAR(n): Fixed length text padding with spaces to n characters.

VARCHAR(n): Variable length text with a predefined limit n.

NCHAR(n)/NVARCHAR(n): Identical to CHAR and VARCHAR, except these allow the use of

Unicode characters. These should be used in preference to CHAR or VARCHAR expect

where there are justifiable reasons.

TEXT/NTEXT: Variable length text of (effectively) unlimited length.

COMMON FUNCTIONS

str1 + str2: Concatenate two strings

'Jenny' + ' ' + 'Smith' = 'Jenny Smith'

LEN(str): Return length of string (also valid for Unicode strings)

LENGTH('Tobias') = 6

SUBSTRING(str,start,count): Extract characters from within a string

SUBSTR('Canberra', 1, 3) = 'Can'

LOWER(str): Convert to lowercase

LOWER('NSW') = 'nsw'

UPPER(str): Convert to uppercase

UPPER('nsw') = 'NSW'

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 32 of 90

POSITION(substring, string, start location): Location of the substring within the string,

searching from the option start location.

POSITION(' ', 'Tobias Cruz') = 7

LEFT(string, length): Returns the left part of the given string with 'length' characters.

LEFT('Ashley Jones', 3) = 'Ash'

RIGHT(string, length): Returns the right part of the given string with 'length' characters.

RIGHT('Ashley Jones', 3) = 'nes'

str LIKE pattern: Matches string to pattern (not regular expressions). “%” matches anything

and “_” matches any single character.

--Name begins with Je

first_name LIKE 'Je%'

--Name has 'i' as 2nd letter

first_name LIKE '_e%'

--Name contains an E or e anywhere

first_name ILIKE '%e%'

DATE AND TIME MANIPULATION

There are three primary date and time types available in SQL Server. Each is appropriate

for different applications.

DATETIME: A date + time data type (Note: This is equivalent to the TIMESTAMP data type as

defined in the SQL Standard, but NOT related to the TIMESTAMP data type as defined by T-

SQL).

DATETIMEOFFSET: A date + time data type that takes into account time zones.

DATE: A date data type

TIME: A time data type

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 33 of 90

COMMON FUNCTIONS

GETDATE(): Get the current date

DATEDIFF(datepart, datetime, datetime): Subtract arguments, and produce the “age” (as

measured by the date part) of the result. You can use GetDate() in the seconds datetime to

get the age as of now.

DATEDIFF('Year', '2001-04-10', '1957-06-13') = 43 years

DATEDIFF('Day', '2001-04-10', '1957-06-13') = 16007 days

DAY/MONTH/YEAR(datetime): Returns the day, month or year from the specified datetime.

DAY('2001-02-16 20:38:40') = 16

MONTH('2001-02-16 20:38:40') = 2

YEAR('2001-02-16 20:38:40') = 2001

DATEPART(datepart, datetime): Returns the specified part of the specified datetime.

DATEPART('day', '…') is equivalent to DAY('...')

AGGREGATIONS

Aggregations can apply to a column of numbers in a relation:

COUNT(col): Number of rows in the column. Unlike the other aggregation functions, count

can apply to any data type.

Sum, average, maximum and minimum can only be used with numeric data types.

SUM(col): Sum of all values in the column. Can only be used with numeric types.

AVG(col): Average of the values in the column.

MIN/MAX(attr): Min/max of values for attr

NULL OPERATORS

A NULL value in any arithmetic operation always yields NULL.

3 + NULL = NULL

1 / NULL = NULL

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 34 of 90

NULL in aggregations is ignored (treated as unknown)

sum(1,2,3,4,5,6) = 21

sum(1,2,NULL,4,NULL,6) = 13

avg(1,2,3,4,5) = 3

avg(NULL,2,NULL,4) = 3

OTHER DATA TYPES

SQLServer supports many other data types such as XML and Geospatial data types. Some

of these extend the SQL standard and so other DBMS systems may not have these types.

USER-DEFINED DATA TYPES

SQLServer has several basic data types which are suitable for most applications, e.g. INT,

CHAR, BOOL etc. However sometimes these are not enough and additional data types are

required. These can be created through the CREATE TYPE command.

CREATE TYPE NewDataType FROM ExistingDataType

Example:

CREATE TYPE postcode FROM CHAR(5) NOT NULL;

SQL DATA DEFINITION LANGUAGE

SQL is normally considered to be a query language. However, it also has a data definition

sub-language (DDL) for describing database schemas.

Each database description contains the names of all the tables and the names and types

for each column. The description also describes all the various types of constraints, such as

primary and foreign keys, unique and not null.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 35 of 90

DEFINING A DATABASE SCHEMA

CREATING TABLES

Relations (tables) are described using:

CREATE TABLE RelName (

 attribute1 type constraints,

 attribute2 type constraints,

 ...

 table-level constraints, ...

)

Community Bank Branch Table

CREATE TABLE Branch (

 name VARCHAR(15),

 location VARCHAR(99) UNIQUE NOT NULL

)

This will define the table schema and create an empty instance of the table. Constraints

can include details about primary keys, foreign keys, default values, and constraints on

attribute values.

DELETING TABLES

Tables are removed via

DROP TABLE RelName;

PRIMARY KEYS IN SQL

The primary key needs to be defined in the CONSTRAINT pragma of the CREATE TABLE

query.

CREATE TABLE Branch (

 name VARCHAR(15) NOT NULL,

 location VARCHAR(99) UNIQUE NOT NULL,

 CONSTRAINT branchpk PRIMARY KEY CLUSTERED (name)

)

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 36 of 90

If the primary key is built from multiple attributes, it is declared in the same way.

CREATE TABLE WorksAt (

 branchid VARCHAR(50) REFERENCES Branch,

 staffid INT REFERENCES Staff,

 CONSTRAINT workspk PRIMARY KEY (branchid, staffid)

)

FOREIGN KEYS IN SQL

Declaring foreign keys in the SQL assures referential integrity when creating, updating or

deleting data.

Like the primary keys, if the foreign key is a single attribute it can be declared inline.

customer_id INT REFERENCES Customer(customerid)

customer_id INT REFERENCES Customer

If the foreign key is built from several attributes, it can be specified in table constraints.

FOREIGN KEY (customer, name)

 REFERENCES Customer(customer, name)

While you do not need to write tests to validate the foreign keys, you do need to ensure

that they are present.

BEHAVIOUR

The default behaviour when a referential conflict is identified it to cancel the operation.

Other behaviours include setting the referring attribute to NULL, or cascading the change.

Cascading changes will delete all referring rows when a parent row is deleted, and change

all the referring attributes to the new value when a parent key is updated.

customer_id INT REFERENCES Customer

 ON DELETE NO ACTION

customer_id INT REFERENCES Customer

 ON DELETE CASCADE

customer_id INT REFERENCES Customer

 ON DELETE SET NULL

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 37 of 90

OTHER ATTRIBUTE PROPERTIES

NULL

To specify that an attribute must cannot be null or have an empty value.

location VARCHAR(50) NOT NULL

UNIQUE

To specify that an attribute must have a unique value. This actually creates a UNIQUE index

against this column.

location VARCHAR(50) UNIQUE

Primary keys are automatically UNIQUE and NOT NULL.

DEFAULTS

The default value of an attribute will be assigned if no value is supplied during an insert.

age INT DEFAULT 18

CONSTRAINTS

To specify an arbitrary constraint against any attribute using the check syntax. This

condition can be arbitrarily complex, and may even involve other attributes, relations and

SELECT queries.

gender CHAR CHECK (gender IN ('M','F'))

QUERIES

An SQL query is a declarative program that retrieves data from a database. The most

common kind of SQL statement is the SELECT query:

SELECT attributes FROM relations WHERE condition

SELECT * FROM Customer WHERE gender= 'M';

The conditions applied to the query can be an arbitrarily complex boolean-valued

expression using the operators mentioned previously.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 38 of 90

SEMANTICS OF SELECT

It is possible to select all the columns from one or more tables. The symbol * denotes a list

of all attributes.

SELECT * FROM Branch;

To alias a column in the output results use the AS syntax.

SELECT family_name AS customer FROM Customer;

The values of the results can be modified through the use of SQL functions and

expressions.

SELECT balance*100 AS cents FROM Account;

MULTI-RELATION SELECT QUERIES

So far we have only seen a query returning the results from a single table. Often we want

the results from multiple tables, which have been joined together. The syntax for this is

similar to simple SELECT queries:

SELECT attributes FROM relation1, relation2, ... WHERE condition

The main between the single relation and multi-relation query is the FROM clause contains

a list of relations, and the conditions includes cross-relation (join) conditions.

SELECT *

 FROM Customer, Account

 WHERE customer.customer_id = account.customer_id

Notice that each attribute is prefixed with the relation it belongs to. This defines where the

attribute belongs and how to join the entities together. The relation.attribute convention

doesn't help if we happen to use the same relation twice in a SELECT.

To handle this, we need to define new names for each "instance" of the relation in the

FROM clause.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 39 of 90

SELECT *

 FROM Account a1, Account a2

 WHERE a1.customer_id = a2.customer_id

 AND a1.account_id != a2.account_id

This can also be used to shorten otherwise lengthy queries.

SELECT *

 FROM Customer c, Account a

 WHERE c.customer_id = a.customer_id

JOINS

Previously we looked at implicit joins, where two or more relations are joined through the

conditions (WHERE clause). More complex joins require the query to contain an explicit join

statement.

JOIN ON

This is the most general form of join. The ON clause is in the same boolean expression

form as the WHERE conditions. All other joins assume identical names between the two

joined relations (i.e. a.customer_id, c.customer_id). If the foreign key in the relation is

named differently to the parent table you must use this join.

SELECT *

 FROM Customer c JOIN Account a ON c.customer_id=a.customer_id

 WHERE ...

OUTER JOIN

Joins only produces results where there are matching values in both of the relations

involved in the join. Often, it is useful to produce results for all tuples in one or both

relations, even if it has no matches in the other.

SELECT *

 FROM Account a LEFT OUTER JOIN Transactions t ON

(a.account_id=t.account_id)

 WHERE ...

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 40 of 90

This will return a list of all accounts with transactions, as well as all new accounts which do

not have any transactions. Those accounts without transactions will have NULL values in

the transaction fields in the results.

Outer joins may use the ON, USING or NATURAL syntax.

[LEFT | RIGHT | FULL] OUTER JOIN

The table which returns NULL values is by default the first (or leftmost) table in the SQL

query. This can be overridden by specifying RIGHT or FULL.

SELECT *

 FROM Customer c RIGHT OUTER JOIN Branch b

 WHERE ...

This will return a list of all customers with branches, as well as all branches that do not

have any customers. Likewise;

SELECT *

 FROM Customer c FULL OUTER JOIN Branch b

 WHERE ...

This will return a list of all customers with branches, all branches who do not have any

customers, and all customers who do not have any branches.

SUBQUERIES

The result of a SELECT query can be used in the WHERE clause of another query. In the

simplest case the subquery returns a single result. The query can then treat the result as a

single constant value and use in expressions.

SELECT *

 FROM Account

 WHERE balance = (SELECT max(balance) FROM Account);

It is also possible to return multiple results from your subquery. This can be treated as a

list of values in the main query using the IN function.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 41 of 90

SELECT *

 FROM Account

 WHERE customer_id IN (SELECT customer_id

 FROM Customer

 WHERE gender='F');

UNION, INTERSECTION, DIFFERENCE

SQL implements the standard set operations, union, intersection and difference on

multiple queries.

SELECT ... UNION SELECT ...

A union will return the set of results from each query as one result. An intersection will

return the set of results that exist only in both queries. And except will return the set of

results in the first query that do not exist in the second.

Each SELECT statement must return the same number of attributes, and each

corresponding attribute must be of the same type.

SELECT min(date), transaction_amt

 FROM Transactions GROUP BY transaction_amt

UNION

SELECT max(date), transaction_amt

 FROM Transactions GROUP BY transaction_amt

SELECT date, transaction_amt

 FROM Transactions

EXCEPT

SELECT max(date), transaction_amt

 FROM Transactions GROUP BY transaction_amt

ORDER BY

SQL does not guarantee that the results of a given query will be in any particular order. The

only way to guarantee this is to re-order the results in the order by statement. The order by

statement is a comma separated list of attributes from the SELECT statement.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 42 of 90

SELECT *

 FROM Customer

 ORDER BY family_name, given_name ASC;

By default it will sort in ascending order, but this can be overridden with the keywords

DESC (descending) or ASC (ascending).

GROUP BY

The GROUP BY statement partitions the results into groups according to a given list of

attributes. This is most commonly used to treat each group separately in computing

aggregations such as COUNT() or MAX().

SELECT count(*), gender

 FROM Customer

 GROUP BY gender;

If the results include aggregate, and non-aggregate values, every non-aggregate value must

appear in the GROUP-BY clause.

DATA MODIFICATION IN SQL

SQL provides mechanisms for modifying data within tables. Constraint checking is applied

automatically on any change. Unlike selection, you cannot perform these operations across

multiple tables.

 INSERT: Add a new row into a table.

 DELETE: Remove rows from a table based on a given condition.

 UPDATE: Modify values in exiting tuples based on a given condition.

SQL also provides mechanisms for modifying table meta-data:

 CREATE TABLE: Create a new empty table

 ALTER TABLE: Change properties of existing table

 DROP TABLE: Remove table from database

Similar operations are available on other kinds of database objects.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 43 of 90

 CREATE VIEW, FUNCTION, RULE, ...

 DROP VIEW, FUNCTION, RULE, ...

Other objects do not have any UPDATE capability, for these use DROP and then CREATE.

However, this may lose custom permissions on the object.

DATA INSERTION

Accomplished via the INSERT operation.

INSERT INTO Customer VALUES ('1', 'Cruz', 'Tobias' ,...);

The values to insert must be supplied for all attributes of the table in same order as appear

in the CREATE TABLE statement. To supply the details in a different order, or to skip

attributes you can specify which fields to insert into.

INSERT INTO Customer (family_name, given_name, gender) VALUES

('Cruz', 'Tobias', 'M');

Unspecified attributes are assigned NULL or, if applicable, a default value.

INSERTION FROM QUERIES

It is possible to use the result of a query to insert data. This can also allow you to insert

multiple rows in a single operation.

INSERT INTO AccountTmp SELECT * FROM Account;

DATA DELETION

Accomplished via the DELETE operation. This will remove all rows from the table that

satisfy a given condition.

DELETE FROM Customer WHERE family_name='Snoad';

If you do not specify a where clause it will delete all rows from the table, use with care.

DELETE FROM Customer;

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 44 of 90

UPDATES

An update allows you to modify the values in a row or rows in a table that satisfy a given

condition.

UPDATE Account SET balance='1234.00' WHERE customer_id='12345';

Each row in the table that satisfies the condition has the assignments applied to it. So it is

possible to update every row in a table by neglecting the conditions. Assignments may

assign constant values to attributes.

UPDATE Account SET balance='1234.00' WHERE customer_id='12345';

Or use existing values in the tuple to compute new values,

UPDATE Account SET balance=balance+'10.00' WHERE customer_id='12345';

CHANGING TABLES

Once a table has been created through the CREATE TABLE operation, modifications to the

table structure can be made using the ALTER TABLE operation.

ALTER TABLE Customer ...

Some possible modifications are:

Add a new column or attribute. This will set all values to NULL unless a default is given.

ALTER TABLE Customer ADD salutation VARCHAR(10);

Change the type of a column.

ALTER TABLE Customer ALTER COLUMN salutation varchar(5);

Change properties of an existing attribute such as add new constraints.

ALTER TABLE Customer ALTER COLUMN salutation varchar(5) NOT NULL;

ALTER TABLE Customer ADD CONSTRAINT cons_name DEFAULT 'Mr' FOR

salutation ;

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 45 of 90

Remove a column

ALTER TABLE Customer DROP COLUMN salutation;

INDEXES

Indexes are a common way to enhance database performance. An index allows the

database server to find and retrieve specific rows much faster than it could do without an

index. But indexes also add overhead to the database system as a whole, so they should be

used sensibly.

CREATE INDEX index_name ON Customer (family_name);

CREATE INDEX index_name2 ON Customer (family_name, given_name);

Indexes can also be used to enforce uniqueness on a column. Note that Primary Keys will

automatically be given a unique index.

CREATE UNIQUE INDEX index_name3 ON Branch (manager);

You will need to test the indexes improve performance and do not add unnecessary

overhead.

VIEWS

A view is like a "virtual relation" or “virtual table” defined through a query. Each attribute

selected (or calculated) in the query is an attribute in the view. The Query may be any SQL

query.

CREATE VIEW FemaleCustomers AS SELECT * from Customer

 WHERE gender='F';

SELECT * FROM FemaleCustomers;

DROP VIEW FemaleCustomers;

A view is valid only as long as its underlying query is valid and does not have to use all the

attributes of the base relations. A view can use computed attribute values defined during

the query.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 46 of 90

Views can be used in queries as if they were stored relations. However, they differ from

stored relations in two important respects:

1. Their "value" can change without being explicitly modified, i.e. a view may change

whenever one of its base tables is updated.

2. They may not be able to be explicitly modified or updated, only a certain simple

kinds of views can be explicitly updated.

Once again, you need to test the views for performance and to ensure the underlying

query is valid.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 47 of 90

5: DOMAINS, STORED PROCEDURES AND TRIGGERS

‘Fall seven times. Stand up eight.’

Old Japanese Proverb

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 48 of 90

PROGRAMMING WITH SQL

SQL is a powerful language for manipulating relational data. But it is not a powerful

programming language. At some point in developing and testing complete database

applications

 We need to implement user interactions

 We need to control sequences of database operations

 We need to process query results in complex ways

and SQL cannot do any of these. Database programming requires a combination of

 manipulation of data in DB (via SQL)

 conventional programming (via procedural code)

This combination is realised in a number of ways:

 passing SQL commands via a "call-level" interface (programming language is

decoupled from SQLServer; most flexible; e.g. Java/JDBC, PHP)

 embedding SQL into augmented programming languages (requires pre-processor

for language; typically DBMS-specific; e.g. SQL/C)

 special-purpose programming language in SQLServer (closely integrated with

DBMS) called T-SQL.

FUNCTIONS AND STORED PROCEDURES

Stored Procedures in SQLServer allow the developer to write small logical programs to

interact with the user and the data. Stored Procedures are often written to check input and

validate data, aggregate and extract data for reporting, and develop control functions

external to the top level application. Stored Procedures can be called manually or can be

called when an event occurs through triggers (itself a special kind of Stored Procedure).

Functions (or a User-Defined-Function) in SQLServer allow the developer to encapsulate

complex query logic into a structure that can be called like any other systems function,

such as count() or sin(). However functions can introduce significant performance issues if

poorly designed. Finally, functions, unlike stored procedures, cannot change the database

(e.g. you can't use DELETE, UPDATE, INSERT).

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 49 of 90

T-SQL

T-SQL is a SQLServer specific language, extending the SQL standard, and integrating

features of a procedural programming language. Functions and Stored Procedures are

stored in the database with the data, which provides a means for extending SQLServer

functionality. Common Stored Procedures include implementing constraint checking,

triggered functions, complex query evaluation and detailed control of displayed results.

FUNCTION SYNTAX

CREATE PROCEDURE name @variable INT OUTPUT

AS

 ...

GO

VARIABLE ASSIGNMENT

DECLARE @var type;

SET @var = expression;

The expression may be an SQL query or a simple value.

VARIABLE TYPES

T-SQL constants and variables can be defined using:

 Standard SQL data types (CHAR, DATE, NUMBER, ...)

 User-defined data types (e.g. Point)

 Table types (e.g. Branches)

RETURN TYPES

An SQLServer function can return a value which is:

 An atomic data type such as an integer, float, text etc (e.g. create function

factorial(int) returns int ...)

 A result set (e.g. create function EmployeeOfMonth(date) returns Employee ...)

 A cursor to a result set that can be accessed outside the stored procedure.

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 50 of 90

SYNTAX

IF STATEMENT

IF cond_1

 statements_1 (or statement block)

ELSE IF cond_2

 statements_2 (or statement block)

ELSE

 statements_n (or statement block)

LOOPS

WHILE condition

 statement (or statement block)

Example: T-SQL Function

CREATE PROCEDURE withdraw @acctNum BIGINT, @amount NUMERIC, @r

VARCHAR(20) OUT

AS

 DECLARE @current NUMERIC;

 DECLARE @newbalance NUMERIC;

 SELECT @current=balance FROM Account

 WHERE account_id = @acctNum;

 IF @amount > @current

 SET @r = 'Insufficient Funds';

 ELSE

 BEGIN

 SET @newbalance = @current - @amount;

 UPDATE Account SET balance = @newbalance

 WHERE account_id = @acctNum;

 SET @r = 'New Balance: ' + cast(@newbalance as

varchar);

 END

GO

DECLARE @r varchar(20);

EXEC withdraw 1, 10, @r output;

SELECT @r

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 51 of 90

INVOKING A FUNCTION OR STORED PROCEDURE

T-SQL stored procedures can be invoked in several ways:

 As part of the execution of another T-SQL function

EXEC myVoidFunction arg1,arg2;

 Automatically, via an insert/delete/update trigger

 Functions (but not Stored Procedures) may also be called as part of a SELECT

statement

select myFunction(arg1,arg2);

select * from myTableFunction(arg1,arg2);

EXCEPTION HANDLING

Later versions of SQLServer allow the use of TRY/CATCH blocks to handle errors. When an

exception occurs:

1. Control is transferred to the relevant exception handling code

2. All database changes so far in this transaction are undone

3. Handler executes and then transaction aborts (and function exits)

BEGIN TRY

 Statements...

END TRY

BEGIN CATCH

 Statements for failure...

END CATCH

You can output messages via the RAISERROR operator. These messages generate server log

entries of different severities. For example:

RAISERROR 'error message', severity (0-25 higher is worse), state (to

differentiate between different versions of the same error) WITH log

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 52 of 90

DYNAMICALLY GENERATED QUERIES

Strings can be built within a function and executed as a query. This is often useful when

creating audit records in triggers. EXEC takes a string and executes it as an SQL query. This

mechanism allows us to construct queries "on the fly". Note the multiple quote marks.

DECLARE @sql VARCHAR(100)

SET @sql = 'SELECT * FROM Account

 WHERE account_id=''' + cast(@id as varchar) + ''''

EXEC (@sql);

EXEC string can be used in any context where the query string could have been used.

TRIGGERS

Triggers are procedures that are stored in the database and are activated in response to

database events. An database event, insert, update or delete activates the trigger which

executes a stored procedure or statements.

Examples of uses for triggers:

 Checking schema-level constraints on update

 Maintaining summary data

 Building audit logs

 Performing multi-table updates (to maintain assertions)

Actions can be executed instead of or after the triggering event. Actions executed instead

of the event, can modify or even skip the event. Actions executed after cannot, although

they can rollback the event as the action exists within the same transaction.

Syntax for SQLServer trigger definition:

CREATE TRIGGER TriggerName ON TableName

 {AFTER|BEFORE} Event1 [OR Event2 ...]

AS statements;

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 53 of 90

 WORKED EXAMPLES

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 54 of 90

CREATE_BANK.SQL

-- DROP TABLES

--

-- Drop any existing tables. This is used to ensure the core tables

-- in the demo database are reset.

DROP TABLE Transactions;

DROP TABLE Accounts;

DROP TABLE Customers;

DROP TABLE WorksAt;

DROP TABLE Branches;

DROP TABLE Staff;

-- CREATE TABLES

--

-- Create the demo tables. Note that these tables have deliberate

-- logical errors

CREATE TABLE Staff (

 staff_id INT IDENTITY(1,1) PRIMARY KEY,

 given_name NVARCHAR(50),

 family_name NVARCHAR(50),

 role NVARCHAR(50)

)

CREATE TABLE Branches (

 name VARCHAR(50),

 location VARCHAR(50),

 manager INT REFERENCES Staff

 ON DELETE SET NULL

 ON UPDATE CASCADE,

 CONSTRAINT branchpk PRIMARY KEY (name)

)

CREATE TABLE WorksAt (

 branch_id VARCHAR(50) REFERENCES Branches

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 55 of 90

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 staff_id INT REFERENCES Staff

 ON UPDATE NO ACTION

 ON DELETE NO ACTION,

 CONSTRAINT worksatpk PRIMARY KEY (branch_id, staff_id)

)

CREATE TABLE Customers (

 customer_id INT IDENTITY(1,1),

 given_name VARCHAR(50),

 family_name VARCHAR(50),

 gender CHAR(1),

 dob DATE,

 age INT,

 branch_id VARCHAR(50) REFERENCES Branches

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 CONSTRAINT customerpk PRIMARY KEY (customer_id)

)

CREATE TABLE Accounts (

 account_id BIGINT IDENTITY(1,1) PRIMARY KEY,

 customer_id INT REFERENCES Customers

 ON UPDATE NO ACTION

 ON DELETE NO ACTION,

 balance NUMERIC CHECK (balance > 0),

 opened_by INT REFERENCES Staff

 ON UPDATE NO ACTION

 ON DELETE NO ACTION

)

CREATE TABLE Transactions (

 account_id BIGINT REFERENCES Accounts

 ON UPDATE NO ACTION

 ON DELETE NO ACTION,

 transaction_amt NUMERIC,

 date DATETIME

)

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 56 of 90

-- LOAD DATA

--

-- Populate the database with demo data.

INSERT INTO Staff VALUES ('Isaac', 'Asmiov', 'Manager');

INSERT INTO Staff VALUES ('Ray', 'Bradbury', 'Teller');

INSERT INTO Staff VALUES ('Arthur', 'Clarke', 'Teller');

INSERT INTO Staff VALUES ('Samuel', 'Delany', 'Customer Service');

INSERT INTO Staff VALUES ('Greg', 'Egan', 'Teller');

INSERT INTO Branches VALUES ('Canberra City', 'Canberra', '1');

INSERT INTO Branches VALUES ('St Lucia', 'Brisbane', '2');

INSERT INTO Branches VALUES ('Haymarket', 'Sydney', null);

INSERT INTO Branches VALUES ('Coburg', 'Melbourne', null);

INSERT INTO WorksAt VALUES ('Canberra City', '1');

INSERT INTO WorksAt VALUES ('St Lucia', '2');

INSERT INTO WorksAt VALUES ('Haymarket', '3');

INSERT INTO WorksAt VALUES ('Coburg', '2');

INSERT INTO Customers VALUES ('Esther', 'Friesner', 'F', '01-01-

1980', NULL, 'Canberra City');

INSERT INTO Customers VALUES ('William', 'Gibson', 'M', '01-01-1970',

NULL, 'St Lucia');

INSERT INTO Customers VALUES ('Peter', 'Hamilton', 'M', '01-01-1969',

NULL, 'St Lucia');

INSERT INTO Customers VALUES ('Simon', 'Ings', 'M', '01-01-1971',

NULL, NULL);

INSERT INTO Customers VALUES ('Gweneth', 'Jones', 'F', '01-01-1980',

NULL, NULL);

INSERT INTO Customers VALUES ('Forest', 'Temmer', 'M', '01-01-1990',

NULL, NULL);

INSERT INTO Accounts VALUES ('1', 0, '1');

INSERT INTO Accounts VALUES ('1', 0, '1');

INSERT INTO Accounts VALUES ('2', 0, '1');

INSERT INTO Accounts VALUES ('3', 0, '2');

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 57 of 90

INSERT INTO Accounts VALUES ('4', 0, '2');

INSERT INTO Accounts VALUES ('5', 0, '3');

INSERT INTO Transactions VALUES ('1', '100.00', getdate());

INSERT INTO Transactions VALUES ('1', '200.00', getdate());

INSERT INTO Transactions VALUES ('1', '-50.00', getdate());

INSERT INTO Transactions VALUES ('2', '100.00', getdate());

INSERT INTO Transactions VALUES ('2', '200.00', getdate());

INSERT INTO Transactions VALUES ('2', '200.00', getdate());

INSERT INTO Transactions VALUES ('2', '-500.00', getdate());

INSERT INTO Transactions VALUES ('2', '100.00', getdate());

INSERT INTO Transactions VALUES ('3', '100.00', getdate());

INSERT INTO Transactions VALUES ('3', '200.00', getdate());

INSERT INTO Transactions VALUES ('3', '200.00', getdate());

INSERT INTO Transactions VALUES ('3', '150.00', getdate());

INSERT INTO Transactions VALUES ('3', '-50.00', getdate());

INSERT INTO Transactions VALUES ('3', '-50.00', getdate());

INSERT INTO Transactions VALUES ('4', '100.00', getdate());

INSERT INTO Transactions VALUES ('4', '200.00', getdate());

INSERT INTO Transactions VALUES ('4', '200.00', getdate());

INSERT INTO Transactions VALUES ('4', '-250.00', getdate());

INSERT INTO Transactions VALUES ('4', '-50.00', getdate());

INSERT INTO Transactions VALUES ('5', '100.00', getdate());

INSERT INTO Transactions VALUES ('5', '200.00', getdate());

INSERT INTO Transactions VALUES ('5', '200.00', getdate());

INSERT INTO Transactions VALUES ('5', '250.00', getdate());

INSERT INTO Transactions VALUES ('5', '250.00', getdate());

INSERT INTO Transactions VALUES ('5', '200.00', getdate());

INSERT INTO Transactions VALUES ('1', '-2000.00', getdate());

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 58 of 90

QUERIES – CREATING A DATABASE

-- INITIAL STEPS

--

-- 1: Login to SSMS

-- 2: Create corebank database

-- 3: Open "New Query" window

-- 4: Run createbank.sql

-- 5: <optional> Attach AdventureWorks2012 database (ensure

-- persmissions are correct and log file can be created)

-- NAVIGATE SSMS

--

-- 1: Create and view ER Diagram

-- 2: Navigate tables heirarchy

-- 3: Investigate table and column options

-- 4: Investigate table and column constraints (primary keys, foreign

-- keys, check constraints)

-- 5: Navigate views heirarchy

-- INFORMATION SCHEMA

--

-- Explore the common information_schama views

SELECT * FROM INFORMATION_SCHEMA.TABLES

SELECT * FROM INFORMATION_SCHEMA.COLUMNS

SELECT * FROM INFORMATION_SCHEMA.VIEWS

SELECT * FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE

SELECT * FROM INFORMATION_SCHEMA.CHECK_CONSTRAINTS

-- Explore the uncommon information_schama views

SELECT * FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE

SELECT * FROM INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE

SELECT * FROM INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 59 of 90

SELECT * FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

SELECT * FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

SELECT * FROM INFORMATION_SCHEMA.VIEW_COLUMN_USAGE

SELECT * FROM INFORMATION_SCHEMA.VIEW_TABLE_USAGE

-- Explore the remaining information_schama views

SELECT * FROM INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE

SELECT * FROM INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS

SELECT * FROM INFORMATION_SCHEMA.DOMAINS

SELECT * FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SELECT * FROM INFORMATION_SCHEMA.PARAMETERS

SELECT * FROM INFORMATION_SCHEMA.ROUTINE_COLUMNS

SELECT * FROM INFORMATION_SCHEMA.ROUTINES

SELECT * FROM INFORMATION_SCHEMA.SCHEMATA

--Q1: Where would you find a list of all check constraints

SELECT * FROM INFORMATION_SCHEMA.CHECK_CONSTRAINTS

--Q2: Where would you find a list of all columns

SELECT * FROM INFORMATION_SCHEMA.COLUMNS

--Q3: Where would you find details of foreign keys

SELECT * FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE

SELECT * FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE

SELECT * FROM INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS

-- TRANSACTIONS

--

-- Show the syntax to wrap queries in transactions

-- This will cause a deviation between the balance and the sum of all

-- transactions per account (check constraint on Acounts).

INSERT INTO Transactions VALUES (1, -1000000, getdate())

UPDATE Accounts SET balance = balance - 100000 WHERE account_id=1;

-- Proof

SELECT * FROM transactions WHERE account_id=1

DELETE FROM transactions WHERE transaction_amt=-1000000

-- Solution: wrap the queries in a transaction

BEGIN TRANSACTION

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 60 of 90

 BEGIN TRY

 INSERT INTO Transactions VALUES (1, -1000000, getdate())

 UPDATE Accounts SET balance = balance - 100000 WHERE

account_id=1;

 COMMIT TRANSACTION

 END TRY

 BEGIN CATCH

 ROLLBACK TRANSACTION

 END CATCH

--Proof

SELECT * FROM transactions WHERE account_id=1

DELETE FROM transactions WHERE transaction_amt=1000000

-- And let's try it for a successful transaction

BEGIN TRANSACTION name

 BEGIN TRY

 INSERT INTO Transactions VALUES (1, 1000000, getdate())

 UPDATE Accounts SET balance = balance + 100000 WHERE

account_id=1;

 COMMIT TRANSACTION name

 END TRY

 BEGIN CATCH

 ROLLBACK TRANSACTION name

 END CATCH

--Proof

SELECT * FROM transactions WHERE account_id=1

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 61 of 90

QUERIES – SQL

-- SQL KEYWORDS

--

-- Show that SQL keywords are restricted

CREATE TABLE select (

 id INT

)

CREATE TABLE foo (

 select INT

)

-- But if you really want to.

CREATE TABLE foo (

 "select" INT

)

-- SQL DATATYPES

--

-- What would be a suitable type for?

-- Family name – nvarchar(50)

-- DOB - date

-- Age - int

-- Salary - numeric(8,2)

-- Timestamp - datetime

-- Gender field - char(1), boolean, varchar(20): depends on how you

-- define gender

-- Role Description – nvarchar(max) or ntext

-- Student ID eg s2006756 – char(8)

-- Transaction ID – bigint

-- Active Account – boolean

-- Last Login – datetime

-- File attachement – varbinary(max) or varchar(100) and store the

-- file on the filesystem

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 62 of 90

-- SQL OPERATORS: MATHS

--

-- Show the common mathematical operators

SELECT 1+1

SELECT sin(180), cos(180), tan(180)

SELECT abs(-100)

SELECT CEILING(10.55), FLOOR(10.55), ROUND(10.55, 0), ROUND(10.55, 1)

SELECT power(2, 3), SELECT SQRT(9)

SELECT random()

-- Q1: How would you return a random whole number between 1 and 100

SELECT round(random()*100, 0)

-- SQL OPERATORS: STRINGS

--

-- Show the common string operators

SELECT 'Hello' + ' World'

SELECT len('Hello')

SELECT SUBSTRING('Hello', 4, 2)

SELECT lower('NSW'), upper('nsw')

SELECT CHARINDEX(' ', 'Hello World')

SELECT LEFT('Hello World', 5), RIGHT('Hello World', 5)

-- Q1: How would you strip the first word off a string

SELECT LEFT('Hello World', CHARINDEX(' ', 'Hello World'))

-- SQL OPERATORS: DATES

--

-- Show the common date operators

SELECT getdate()

SELECT datediff(yyyy, '01-01-1970', '01-01-1999')

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 63 of 90

SELECT day(getdate()), month(getdate()), year(getdate()),

datepart(yyyy, getdate()), datepart(dy, getdate())

--Q1: How would you get someones age from their dob

SELECT datediff(yyyy, '01-01-1970', getdate())

-- AGGREGATION

--

-- Show the aggregation (and group by) syntax

SELECT count(*), sum(transaction_amt), avg(transaction_amt),

min(transaction_amt), max(transaction_amt) from transactions

SELECT sum(*), account_id

 FROM Accounts

 GROUP BY account_id

-- NULL

--

-- Null will always return NULL (expect in aggregation)

SELECT 1+NULL, 3/NULL

-- Proof aggregation should return the same value

SELECT sum(transaction_amt) FROM transactions

INSERT INTO transactions VALUES (1, null, getdate())

SELECT * FROM transactions

SELECT sum(transaction_amt) FROM transactions

-- UNICODE

--

-- How to insert unicode strings into the database. This should be

-- the default unless there is a valid design reason not to.

SELECT * FROM Staff

-- Unicode string

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 64 of 90

INSERT INTO Staff VALUES (N'???', N'???', 'Teller')

-- Proof

SELECT * FROM Staff

-- Unicode string, but not encapsulated correctly

INSERT INTO Staff VALUES ('???', '???', 'Teller')

SELECT * FROM Staff

-- SQL DEMONSTRATION

--

-- Demonstrate all the SQL functions that have been discussed to

-- date. Focus on JOINS.

SELECT * FROM Customers

SELECT * FROM Customers WHERE gender IN ('M', 'F');

SELECT * FROM Customers c, Branches b

SELECT * FROM Customers , Accounts a

 WHERE c.customer_id = a.customer_id

SELECT * FROM Accounts a1, Accounts a2

 WHERE a1.customer_id = a2.customer_id

-- SQL EXERCISES

--

-- Test all the SQL functions that have been discussed to date. Focus

-- on JOINS.

--Q1. Return all branches

SELECT * FROM Branches

--Q2. List of all Female Customers

SELECT * FROM Customers WHERE gender='F'

--Q3. List of all Male Customers over 40

SELECT *

 FROM Customers

 WHERE gender='M' AND datediff(yy, dob, getdate()) > 40

--Q4. List of all Customers sorted by given name

SELECT * FROM Customers ORDER BY given_name

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 65 of 90

--Q5. List of all Customers with a home branch

SELECT * FROM Customers

 WHERE branch_id is not null ---- or

SELECT * FROM Customers c, Branches b

 WHERE c.branch_id = b.name

--Q6. List of all Customers with their home branch (or not)

SELECT *

 FROM Customers c LEFT OUTER JOIN Branches b ON c.branch_id =

b.name

--Q7. Average Transaction size

SELECT avg(transaction_amt) FROM Transactions

--Q8. List of all Customers without a Branch

SELECT * FROM Customers WHERE branch_id is null

-- MORE SQL EXERCISES

--

-- It never ends

--Q1. A List of unique roles in the system

SELECT DISTINCT role from Staff

--Q2. List of all people (Customers & Staff) in the system

SELECT customer_id, family_name, given_name FROM Customers

 UNION

 SELECT staff_id, family_name, given_name FROM Staff

--Q2(ADVANCED): Include the type of person

SELECT customer_id, family_name, given_name, 'Customer' FROM

Customers

 UNION

 SELECT staff_id, family_name, given_name, 'Staff' FROM Staff

--Q3. The list of all Customers without Accounts

SELECT *

 FROM Customers

 WHERE customer_id NOT IN (SELECT customer_id FROM Accounts)

--Q4. The correct balance per account

SELECT sum(transaction_amt), account_id

 FROM Transactions

 GROUP BY account_id

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 66 of 90

--Q5. The Customer with the highest balance (by transaction)

SELECT TOP 1 sum(t.transaction_amt) as sum, c.customer_id

 FROM Transactions t, Accounts a, Customers c

 WHERE t.account_id=a.account_id AND c.customer_id=a.customer_id

 GROUP BY c.customer_id

 ORDER BY sum desc

--Q6. Number of Staff per location

SELECT count(*), branch_id FROM worksat GROUP BY branch_id

--Q7. List of all Customers whose given name contains ‘e’

SELECT * FROM Customers WHERE given_name LIKE '%e%'

--Q8. List of all Customers whose name 2nd character is ‘e’

SELECT * FROM Customers WHERE given_name LIKE '_e%'

--Q9. List of all Customers whose name does start with ‘e’

SELECT * FROM Customers WHERE given_name LIKE '[^e]%'

--Q10. List of Customers with their highest balance Account and

lowest balance Account

SELECT t.customer_id, min(t.sumt) as min, max(t.sumt) as max FROM

 (

 SELECT c.customer_id, a.account_id, sum(t.transaction_amt) as

sumt

 FROM Customers c, Accounts a, Transactions t

 WHERE c.customer_id=a.customer_id AND

a.account_id=t.account_id

 GROUP BY c.customer_id, a.account_id

) as t

 GROUP BY customer_id

-- QUERY EXECUTION PLAN

--

-- Show QEP

-- Show how to read plan (backwards)

-- Explain how Cost % works

-- Show the difference between table scan and index scan

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 67 of 90

-- BROKEN SQL

--

-- Identify the errors in the following statements

--Q1: Missing GROUP BY

SELECT account_id, avg(transaction_amt) FROM Transactions

--Q2: IS NOT NULL not != NULL

SELECT * FROM Customers WHERE branch_id != null

--Q3: DISTINCT not UNIQUE

SELECT UNIQUE role from Staff

--Q4: ' not "

SELECT customer_id, family_name, given_name, "Customer" FROM

Customers

 UNION

 SELECT staff_id, family_name, given_name, "Staff" FROM Staff

--Q5: Incorrect comparison

SELECT * FROM Customers WHERE customer_id NOT IN (SELECT account_id

FROM Accounts)

--Q6: Case insensitivity

SELECT *

 FROM Customers

 WHERE gender='f'

--Q7: Missing JOIN fields

SELECT *

 FROM Customers c, Accounts a

 WHERE c.customer_id = 1

--Q8: Incorrect join fields

SELECT *

 FROM Customers c JOIN Transactions t ON

(t.account_id=c.customer_id)

--Q9: Different number of fields between the UNION

SELECT * FROM Customers

UNION

SELECT * FROM Staff

--Q10: Undifferentiated tables

SELECT *

 FROM Accounts, Accounts

 WHERE accounts.customer_id=accounts.customer_id

--Q11: yy not 'yy'

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 68 of 90

SELECT * FROM Customers WHERE gender='M' AND datediff('yy', dob,

getdate()) > 40

--Q12: missing as t

SELECT t.customer_id, min(t.sumt) as min, max(t.sumt) as max FROM

 (

 SELECT c.customer_id, a.account_id, sum(t.transaction_amt) as

sumt

 FROM Customers c, Accounts a, Transactions t

 WHERE c.customer_id=a.customer_id AND

a.account_id=t.account_id

 GROUP BY c.customer_id, a.account_id

)

 GROUP BY customer_id

--Q13: Incorrect join

SELECT t.customer_id, min(t.sumt) as min, max(t.sumt) as max FROM

 (

 SELECT c.customer_id, a.account_id, sum(t.transaction_amt) as

sumt

 FROM Customers c, Accounts a, Transactions t

 WHERE c.customer_id=a.customer_id AND

t.account_id=t.account_id

 GROUP BY c.customer_id, a.account_id

) as t

 GROUP BY customer_id

--Q14: sum() not min()

SELECT t.customer_id, min(t.sumt) as min, max(t.sumt) as max FROM

 (

 SELECT c.customer_id, a.account_id, min(t.transaction_amt) as

sumt

 FROM Customers c, Accounts a, Transactions t

 WHERE c.customer_id=a.customer_id AND

a.account_id=t.account_id

 GROUP BY c.customer_id, a.account_id

) as t

 GROUP BY customer_id

--Q15: Wrong database - Note: change the database to 'master'

SELECT * FROM Customers

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 69 of 90

-- TEST CASE STRUCTURE

--

-- Some options on how to wrap SQL in test cases.

-- Type A: Returns result set

SELECT

 CASE

 WHEN <INCLUDE TEST CHECK <BASED ON TEST QUERY RESULTS>

HERE> THEN 'Test Pass'

 WHEN <INCLUDE TEST CHECK <BASED ON TEST QUERY RESULTS>

HERE> THEN 'Test Fail'

 END

 FROM (

 <INCLUDE TEST QUERY HERE>

) as t

-- Type B: Returns Exception (RAISERROR)

IF <INCLUDE TEST CHECK HERE>(<INCLUDE TEST QUERY HERE>)

 RAISERROR ('Test Fail', 11, 1)

ELSE

 PRINT 'Test Pass'

-- Type C: Returns Exception with customer message

DECLARE @msg varchar(255)

DECLARE @result int

SET @result = 0

SET @msg = 'Test Fail: '

SET @result = (SELECT count(*) FROM (

 <INCLUDE TEST QUERY HERE>

) as t)

IF <INCLUDE TEST CHECK HERE>

 BEGIN

 SET @msg = @msg + cast(@result as varchar) + ' records

found. Expected 0'

 RAISERROR (@msg , 11, 100)

 END

ELSE

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 70 of 90

 PRINT 'Test Pass'

-- TEST CASE DEMO

--

-- Show how you can wrap simple SQL in a test case wrapper

-- Setup (compare current DB schema to a previous snapshot)

DROP TABLE baseline_schema

SELECT * INTO baseline_schema FROM INFORMATION_SCHEMA.COLUMNS

-- Type A: Test Pass

SELECT

 CASE

 WHEN count(*) = 0 THEN 'Test Pass'

 WHEN count(*) > 0 THEN 'Test Fail'

 END

 FROM (

 SELECT * FROM INFORMATION_SCHEMA.COLUMNS

 EXCEPT

 SELECT * FROM baseline_schema

) as t

-- Type A: Test Fail

DELETE FROM baseline_schema WHERE COLUMN_NAME='name'

SELECT

 CASE

 WHEN count(*) = 0 THEN 'Test Pass'

 WHEN count(*) > 0 THEN 'Test Fail: ' + cast(count(*) as

varchar) + ' records found. Expected 0'

 END

 FROM (

 SELECT * FROM INFORMATION_SCHEMA.COLUMNS

 EXCEPT

 SELECT * FROM baseline_schema

) as t

-- Type B: Test Fail

IF EXISTS(

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 71 of 90

 SELECT * FROM INFORMATION_SCHEMA.COLUMNS

 EXCEPT

 SELECT * FROM baseline_schema

)

 RAISERROR ('Test Fail', 11, 1)

ELSE

 PRINT 'Test Pass'

-- TEST CASE EXAMPLES

--

-- Practices wrapping SQL in test cases

--BR1: All branches must have a manager

SELECT

 CASE

 WHEN count(*) = 0 THEN 'Test Pass'

 WHEN count(*) > 0 THEN 'Test Fail: ' + cast(count(*) as

varchar) + ' records found. Expected 0'

 END

 FROM (

 SELECT * FROM Branches WHERE manager is null

) as t

--or (show multiple rows - not prefered)

SELECT

 CASE

 WHEN count(*) = 0 THEN 'Test Pass'

 WHEN count(*) > 0 THEN 'Test Fail: ' + cast(count(*) as

varchar) + ' records found. Expected 0'

 END, location

 FROM (

 SELECT * FROM Branches WHERE manager is null

) as t

 GROUP BY location

--or (bad practice)

SELECT 'Test Fail', location FROM Branches WHERE manager is null

--or (test the data rather than the count - not prefered)

SELECT

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 72 of 90

 CASE

 WHEN location != 'Sydney' THEN 'Test Pass'

 WHEN location = 'Sydney' THEN 'Test Fail: ' +

cast(count(*) as varchar) + ' records found. Expected 0'

 END, location

 FROM (

 SELECT * FROM Branches WHERE manager is null

) as t

 GROUP BY location

--BR2: The account balance must = the sum of all transactions

IF EXISTS(

 SELECT sum(t.transaction_amt)-a.balance

 FROM Transactions t, Accounts a

 WHERE t.account_id=a.account_id

 GROUP BY a.balance

 HAVING sum(t.transaction_amt)-a.balance > 0

)

 RAISERROR ('Test Fail', 11, 1)

ELSE

 PRINT 'Test Pass'

--BR3: The manager must work at a branch

DECLARE @msg varchar(255)

DECLARE @result int

SET @result = 0

SET @msg = 'Test Fail: '

SET @result = (SELECT count(*) FROM (

 SELECT manager

 FROM Branches b

 WHERE b.manager NOT IN (SELECT staff_id FROM WorksAt

WHERE WorksAt.branch_id=b.name)

) as t)

IF @result > 0

 BEGIN

 SET @msg = @msg + cast(@result as varchar) + ' records

found. Expected 0'

 RAISERROR (@msg , 11, 100)

 END

ELSE

 PRINT 'Test Pass'

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 73 of 90

--BR4: The ages of each customer must be correct

SELECT

 CASE

 WHEN sumage = 0 THEN 'Test Pass'

 WHEN sumage > 0 THEN 'Test Fail'

 END

 FROM (

 SELECT SUM(datediff(yy, dob, getdate()) - coalesce(age,

0)) as sumage

 FROM Customers

) as t

--BR5: All customers must have +’ve balances

IF EXISTS(

 SELECT balance FROM Accounts WHERE balance < 0

)

 RAISERROR ('Test Fail', 11, 1)

ELSE

 PRINT 'Test Pass'

--or (via insert)

DECLARE @myrow INT

SET @myrow = 0

BEGIN TRANSACTION t1

 BEGIN TRY

 INSERT INTO Accounts VALUES (1, -100, 1)

 COMMIT TRANSACTION t1

 END TRY

 BEGIN CATCH

 ROLLBACK TRANSACTION t1

 END CATCH

SELECT

 CASE

 WHEN rownum = 0 THEN 'Test Pass'

 WHEN rownum > 0 THEN 'Test Fail: Negative balance was

inserted'

 END

 FROM (

 SELECT @myrow as rownum

) as t

--BR6: Managers must have the correct staff role

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 74 of 90

DECLARE @msg varchar(255)

DECLARE @result int

SET @result = 0

SET @msg = 'Test Fail: '

SET @result = (SELECT count(*) FROM (

 SELECT *

 FROM staff s, branches b

 WHERE s.staff_id=b.manager AND s.role != 'Manager'

) as t)

IF @result > 0

 BEGIN

 SET @msg = @msg + cast(@result as varchar) + ' records

found. Expected 0'

 RAISERROR (@msg , 11, 100)

 END

ELSE

 PRINT 'Test Pass'

--BR7: All Customers must have an account

IF EXISTS(

 SELECT customer_id FROM Customers c

 EXCEPT

 SELECT customer_id FROM Accounts a

)

 RAISERROR ('Test Fail', 11, 1)

ELSE

 PRINT 'Test Pass'

--BR8: All Staff must work at a Branch

DECLARE @msg varchar(255)

DECLARE @result int

SET @result = 0

SET @msg = 'Test Fail: '

SET @result = (SELECT count(*) FROM (

 SELECT staff_id FROM Staff

 EXCEPT

 SELECT staff_id FROM WorksAt

) as t)

IF @result > 0

 BEGIN

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 75 of 90

 SET @msg = @msg + cast(@result as varchar) + ' records

found. Expected 0'

 RAISERROR (@msg , 11, 100)

 END

ELSE

 PRINT 'Test Pass'

--BR9: All Accounts must be opened by Staff

DECLARE @myrow INT

SET @myrow = 0

BEGIN TRANSACTION t1

 BEGIN TRY

 INSERT INTO Accounts VALUES (1, 100, NULL)

 COMMIT TRANSACTION t1

 END TRY

 BEGIN CATCH

 ROLLBACK TRANSACTION t1

 END CATCH

SELECT

 CASE

 WHEN rownum > 0 THEN 'Test Pass'

 WHEN rownum = 0 THEN 'Test Fail: Account was inserted

without a staff member'

 END

 FROM (

 SELECT @myrow as rownum

) as t

-- ROW_NUMBER/RANK

--

-- Show how to return row numbers in the result set

SELECT ROW_NUMBER() OVER (ORDER BY account_id), * FROM Transactions

SELECT ROW_NUMBER() OVER (ORDER BY transaction_amt), * FROM

Transactions

SELECT ROW_NUMBER() OVER (PARTITION BY account_id ORDER BY

transaction_amt), * FROM Transactions

SELECT RANK() OVER (ORDER BY account_id), * FROM Transactions

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 76 of 90

SELECT RANK() OVER (ORDER BY transaction_amt), * FROM Transactions

SELECT RANK() OVER (PARTITION BY account_id ORDER BY

transaction_amt), * FROM Transactions

-- SQL UPDATES, INSERTS & DELETE

--

-- Practice changing data in the database

--Q1. Update Balance (Account)

INSERT INTO Transactions VALUES (1, 2000, getdate())

UPDATE Accounts

 SET balance=(SELECT sum(t.transaction_amt) FROM transactions t

WHERE Accounts.account_id=t.account_id)

SELECT * FROM accounts;

--Q2. Add 5 new Staff manually and 5 using SSMS

INSERT INTO Staff VALUES ('Tobias', 'Snoad', 'Teller')

INSERT INTO Staff VALUES ('Jennifer', 'Edmonson', 'Teller')

INSERT INTO Staff VALUES ('Ashley', 'Flynn', 'Teller')

INSERT INTO Staff VALUES ('Dev', 'Pathy', 'Teller')

INSERT INTO Staff VALUES ('Xianzheng', 'Zhou', 'Teller')

--Q3. Add a Manager for every Branch

UPDATE Branches SET manager=3 WHERE name=2;

UPDATE Branches SET manager=4 WHERE name=3;

--Q4. Update Age (Customer)

UPDATE Customers SET age=datediff(year, dob, getdate())

--Q5. Delete all Customers without an Account

DELETE FROM Customers

 WHERE customer_id NOT IN (SELECT customer_id FROM Accounts)

--Q6. Deposit $100 into Esthers Account

SELECT * FROM Customers c, Accounts a

 WHERE a.customer_id=c.customer_id AND c.customer_id=1

INSERT INTO Transactions VALUES (1, 100, getdate());

UPDATE Accounts SET balance=balance+100 WHERE account_id=1

--or (via transaction)

BEGIN TRANSACTION t1

 BEGIN TRY

 INSERT INTO Transactions

 VALUES (

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 77 of 90

 (SELECT TOP 1 a.account_id

 FROM Customers c, Accounts a

 WHERE a.customer_id=c.customer_id AND

c.given_name='Esther'),

 100,

 getdate());

 UPDATE Accounts SET balance=balance+100

 WHERE account_id=(

 SELECT TOP 1 a.account_id

 FROM Customers c, Accounts a

 WHERE a.customer_id=c.customer_id AND

c.given_name='Esther')

 COMMIT TRANSACTION t1

 END TRY

 BEGIN CATCH

 ROLLBACK TRANSACTION t1

 END CATCH

--Q7. Convert all Customer given & family names to lower case

UPDATE Customers SET family_name=lower(family_name)

UPDATE Customers SET given_name=lower(given_name)

--Q8. Delete Customer #2

DELETE

 FROM Transactions

 WHERE account_id=(SELECT account_id FROM accounts where

customer_id=2)

DELETE FROM Accounts WHERE customer_id=2

DELETE FROM Customers WHERE customer_id=2

-- CREATING CUSTOMER DATA TYPES

--

-- For common constraints such as postcode or email address

CREATE TYPE postcode FROM CHAR(4) NOT NULL;

CREATE TABLE foo (

 user_pc POSTCODE,

 username VARCHAR(20)

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 78 of 90

)

INSERT INTO foo VALUES ('1234', 'evan')

SELECT * FROM foo

INSERT INTO foo VALUES ('12345', 'evan')

SELECT * FROM foo

INSERT INTO foo VALUES ('x123', 'evan')

SELECT * FROM foo

DROP TABLE foo

DROP TYPE POSTCODE

-- or

CREATE TYPE postcode FROM INT

 CHECK (postcode > 10000 and postcode < 99999);

CREATE TABLE foo (

 user_pc POSTCODE,

 username VARCHAR(20)

)

INSERT INTO foo VALUES (11111, 'evan')

SELECT * FROM foo

INSERT INTO foo VALUES (123456, 'evan')

SELECT * FROM foo

INSERT INTO foo VALUES (100, 'evan')

SELECT * FROM foo

-- DDL

--

-- Changing the database

-- ALTER TABLE

ALTER TABLE Customers ADD salutation VARCHAR(10);

ALTER TABLE Customers ALTER COLUMN salutation varchar(5);

ALTER TABLE Customers ALTER COLUMN salutation varchar(5) NOT NULL;

ALTER TABLE Customers

 ADD CONSTRAINT cons_name DEFAULT 'Mr' FOR salutation ;

ALTER TABLE Customers DROP COLUMN salutation;

-- ALTER TABLE: Computed Columns

ALTER TABLE Customers

 ADD fullname2 AS given_name + ' ' + family_name

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 79 of 90

ALTER TABLE Customers

 ADD fullname AS given_name + ' ' + family_name PERSISTED

SELECT * FROM Customers;

-- CREATE TABLE

CREATE TABLE Address (

 addressid INT IDENTITY (1,1),

 street VARCHAR(50),

 suburb VARCHAR(50),

 city VARCHAR(50),

 country VARCHAR(50) DEFAULT 'Malaysia',

 postcode INT CHECK (postcode > 1000 AND postcode < 9999)

)

INSERT INTO Address VALUES (NULL, NULL, NULL, DEFAULT, 1001)

SELECT * FROM Address

-- DROP TABLE

DROP TABLE Customer

-- CREATE INDEX

CREATE INDEX index_name ON Customer (family_name);

CREATE INDEX index_name2 ON Customer (family_name, given_name);

-- CREATE VIEW

CREATE VIEW FemaleCustomers AS SELECT * from Customer

 WHERE gender='F';

SELECT * FROM FemaleCustomers;

DROP VIEW FemaleCustomers;

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 80 of 90

STORED PROCEDURES

-- T-SQL (AND STORED PROCEDURE) SYNTAX

--

-- Show that basic T-SQL syntax. While there is a lot more, this is

-- sufficient to write good test cases

-- Variables

DECLARE @var type;

SET @var = expression;

-- IF/THEN/ELSE

IF cond_1

 statements_1 (or statement block)

ELSE IF cond_2

 statements_2 (or statement block)

ELSE

 statements_n (or statement block)

-- Loops

WHILE condition

 statement (or statement block)

-- STORED PROCEDURE EXAMPLES

--

-- Withdraw is a simple (and inaccurate) stored procedure updates the

-- balance in the Accounts table based on the given parameters

--A very simple stored procedure

CREATE PROCEDURE getCustomer(@customerId INT) AS

BEGIN

 SELECT * FROM Customers WHERE customer_id=@customerId

END

-- Call a stored procedure

EXEC getCustomer 1

-- Note: CREATE PROCEDURE Must be the first statement in the block

-- when executing

DROP PROCEDURE withdraw

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 81 of 90

CREATE PROCEDURE withdraw @acctNum BIGINT, @amount NUMERIC AS

BEGIN

 DECLARE @current NUMERIC;

 DECLARE @newbalance NUMERIC;

 SELECT @current=balance FROM Accounts

 WHERE account_id = @acctNum;

 IF @amount > @current

 SELECT 'Insufficient Funds';

 ELSE

 BEGIN

 SET @newbalance = @current - @amount;

 UPDATE Accounts SET balance = @newbalance

 WHERE account_id = @acctNum;

 SELECT 'New Balance: ' + cast(@newbalance as

varchar);

 END

END

-- Call a stored procedure

EXEC withdraw 1, 10;

-- STORED PROCEDURE TEST CASES

--

-- Exercises on how to wrap a stored procedure in a test case

-- Prepare

CREATE TABLE #result (

 result VARCHAR(100)

)

--Q1. Withdraw SP returns “New Balance XXX” when withdrawing $1

-- from User 1

DELETE FROM #result

INSERT INTO #result EXEC withdraw 1, 1

SELECT

 CASE

 WHEN count(*) = 1

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 82 of 90

 THEN 'Test Pass'

 ELSE 'Test Fail'

 END

 FROM (

 SELECT * FROM #result WHERE result LIKE 'New Balance%'

) as t

--Q2. SP returns “Insufficient Balance” when withdrawing $10000

-- from User 1

SET NOCOUNT ON

DELETE FROM #result

INSERT INTO #result EXEC withdraw 1, 10000

IF (SELECT count(*) FROM #result WHERE result LIKE 'Insufficient

Funds')=0

 RAISERROR ('Test Fail', 11, 1)

ELSE

 PRINT 'Test Pass'

--Q3. SP returns an error when withdrawing -$10

SET NOCOUNT ON

DELETE FROM #result

INSERT INTO #result EXEC withdraw 1, -10

IF (SELECT count(*) FROM #result WHERE result LIKE 'Error%')=0

 RAISERROR ('Test Fail', 11, 1)

ELSE

 PRINT 'Test Pass'

--Q4. SP returns an error when withdrawing from User 100

DELETE FROM #result

INSERT INTO #result EXEC withdraw 100, 1

SELECT

 CASE

 WHEN count(*) > 0 THEN 'Test Pass'

 ELSE 'Test Fail: Expected 1 record, found ' +

cast(count(*) as varchar)

 END

 FROM (

 SELECT * FROM #result WHERE result LIKE 'Error%'

) as t

--Q5. SP returns “New Balance” when withdrawing FLOAT

DELETE FROM #result

INSERT INTO #result EXEC withdraw 1, 1.5

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 83 of 90

DECLARE @msg varchar(255)

DECLARE @result varchar(255)

SET @result = 0

SET @msg = ''

SET @result = (SELECT * FROM #result WHERE result LIKE 'New

Balance%')

IF count(@result) = 0

 BEGIN

 SET @msg = 'Test Fail: ' + cast(@result as varchar) + ''

 RAISERROR (@msg , 11, 100)

 END

ELSE

 BEGIN

 SET @msg = 'Test Pass: ' + cast(@result as varchar) + ''

 PRINT @msg

 END

--Q6. SP returns Bal-1.5 when withdrawing 1.499999999

DECLARE @msg varchar(255)

DECLARE @result numeric(18, 2)

DECLARE @expected numeric(18,2)

SET @result = 0

SET @msg = ''

SET @expected = (SELECT cast(balance as numeric(18, 2))-1.5

 FROM Accounts

 WHERE account_id=1)

DELETE FROM #result

INSERT INTO #result EXEC withdraw 1, 1.4999999999

SET @result = (SELECT cast(SUBSTRING(result, 14, 100) as numeric(18,

2))

 FROM #result)

IF @result != @expected

 BEGIN

 SET @msg = 'Test Fail: Expected ' + cast(@expected as

varchar) + ', Got ' + cast(@result as varchar) + ''

 RAISERROR (@msg , 11, 100)

 END

ELSE

 BEGIN

 SET @msg = 'Test Pass: ' + cast(@result as varchar) + ''

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 84 of 90

 PRINT @msg

 END

--Q7. SP returns error when withdrawing “ABC”

SET NOCOUNT ON

DELETE FROM #result

BEGIN TRANSACTION

 BEGIN TRY

 INSERT INTO #result EXEC withdraw 1, 'ABC'

 RAISERROR ('Test Fail', 11, 1)

 COMMIT TRANSACTION

 END TRY

 BEGIN CATCH

 PRINT 'Test Pass'

 ROLLBACK TRANSACTION

 END CATCH

--Q8. Account table balance=balance-1 when withdrawing $1

DECLARE @old NUMERIC

DECLARE @new NUMERIC

SET @old = (SELECT balance FROM Accounts where account_id=1)

EXEC withdraw 1, 1

SET @new = (SELECT balance FROM Accounts where account_id=1)

IF @new = @old-1

 PRINT 'Test Pass'

ELSE

 RAISERROR ('Test Fail', 11, 1)

--Q9. Account table balance=sum (transaction table) when ...

--Q10. Account balance=balance when withdrawing $10000

SELECT * INTO #accountstmp FROM accounts

EXEC withdraw 1, 100000

SELECT

 CASE

 WHEN count(*) = 0

 THEN 'Test Pass'

 ELSE 'Test Fail'

 END

 FROM (

 SELECT * FROM Accounts

 EXCEPT

 SELECT * FROM #accountstmp

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 85 of 90

) as t

DROP TABLE #accountstmp

--or

DECLARE @old NUMERIC

DECLARE @new NUMERIC

SET @old = (SELECT balance FROM Accounts where account_id=1)

DELETE FROM #result

INSERT INTO #result EXEC withdraw 1, 100000

SET @new = (SELECT balance FROM Accounts where account_id=1)

IF @new = @old

 PRINT 'Test Pass'

ELSE

 RAISERROR ('Test Fail', 11, 1)

--Q11. Account table should not change when withdrawing $-10

SELECT * INTO #accountstmp FROM accounts

DELETE FROM #result

INSERT INTO #result EXEC withdraw 1, -10

SELECT

 CASE

 WHEN count(*) = 0

 THEN 'Test Pass'

 ELSE 'Test Fail'

 END

 FROM (

 SELECT * FROM Accounts

 EXCEPT

 SELECT * FROM #accountstmp

) as t

DROP TABLE #accountstmp

-- TRIGGERS

--

-- How to automatically execute a stored procedure when an insert,

-- update or delete occurs. Note the "inserted" table.

CREATE TRIGGER withdraw ON Transactions AFTER INSERT AS

BEGIN

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 86 of 90

 DECLARE @current NUMERIC;

 DECLARE @newbalance NUMERIC;

 DECLARE @amount NUMERIC;

 DECLARE @acctNum BIGINT;

 SELECT @current=balance, @amount=i.transaction_amt,

@acctNum=i.account_id

 FROM Accounts a, inserted i

 WHERE a.account_id = i.account_id;

 IF @amount + @current < 0

 BEGIN

 RAISERROR('Insufficient funds', 1, 1)

 ROLLBACK TRANSACTION

 END

 ELSE

 BEGIN

 SET @newbalance = @current + @amount;

 UPDATE Accounts SET balance = @newbalance

 WHERE account_id = @acctNum;

 END

END

-- Proof

INSERT INTO Transactions VALUES (1, 100, getdate())

SELECT * FROM Accounts WHERE account_id=1

SELECT * FROM Transactions WHERE account_id=1

-- Proof

INSERT INTO Transactions VALUES (1, -500, getdate())

SELECT * FROM Accounts WHERE account_id=1

SELECT * FROM Transactions WHERE account_id=1

-- Simple ON DELETE TRIGGER to stop a deletion from occuring

CREATE TRIGGER stopDelete ON Transactions AFTER DELETE AS

BEGIN

 RAISERROR('Cannot Delete transactions.', 17, 1)

 ROLLBACK TRANSACTION

END

-- Proof

DELETE FROM Transactions

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 87 of 90

-- DYNAMIC SQL

--

-- How to automatically run an SQL query that is stored in a string

-- or table

-- Simple execution

EXEC ('SELECT * FROM Customers WHERE customer_id=1')

-- Execute through a look - select customers 1-5

DECLARE @num int

SET @num = 5

DECLARE @sql varchar(max)

SET @sql = ''

WHILE @num > 0

 BEGIN

 SET @sql = @sql + 'SELECT * FROM Customers

 WHERE customer_id=' + cast(@num as varchar)+ ' '

 IF @num <> 1

 SET @sql = @sql + 'UNION '

 SET @num = @num - 1

 END

EXEC (@sql)

-- Build SQL in SQL

SELECT

 'select ''' + Table_Schema + ''' as SchemaName,

 ''' + Table_Name + ''' as ObjectName ,

 ''' + case Table_Type when 'base table' then 'table' else

lower(Table_Type) end + ''' as ObjectType ,

 count(*) as Rows from ' + Table_Schema +'.'+ Table_Name + ' '

FROM information_schema.tables

ORDER BY Table_Type;

-- Execute a series of SQL from a SQL query result set (via a cursor)

-- This is very advanced.

DECLARE c CURSOR FOR select

 'select ''' + Table_Schema + ''' as SchemaName,

 ''' + Table_Name + ''' as ObjectName ,

 ''' + case Table_Type when 'base table' then 'table' else

lower(Table_Type) end + ''' as ObjectType ,

 count(*) as Rows from ' + Table_Schema +'.'+ Table_Name + ' '

 from information_schema.tables

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 88 of 90

DECLARE @bigsql varchar(max)

SET @bigsql = ''

OPEN c

DECLARE @sql varchar(max)

FETCH NEXT FROM c INTO @sql

WHILE @@FETCH_STATUS = 0

 BEGIN

 SET @bigsql = @bigsql + @sql + ' union all '

 FETCH NEXT FROM c INTO @sql

 END

CLOSE c

DEALLOCATE c

EXEC(@bigsql + @sql)

-- Execute sql that is stored in a table.

DECLARE @var varchar(50)

SET @var = (SELECT * FROM sql)

DECLARE c CURSOR FOR SELECT sql FROM sql

OPEN c

DECLARE @sql varchar(max)

FETCH NEXT FROM c INTO @sql

WHILE @@FETCH_STATUS = 0

 BEGIN

 EXEC (@sql)

 FETCH NEXT FROM c INTO @sql

 END

CLOSE c

DEALLOCATE c

-- Dynamic SQL to look for nulls

declare @fullsql varchar(max),

 @sql varchar(255)

SET @fullsql = ''

declare curse insensitive cursor for

 SELECT 'SELECT '''+TABLE_NAME+''', '''+COLUMN_NAME+''',

count('+COLUMN_NAME+') as nulls, count(*)-count('+COLUMN_NAME+') as

notnulls FROM '+TABLE_NAME+'

 '

 FROM INFORMATION_SCHEMA.COLUMNS

open curse

fetch next from curse into @sql

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 89 of 90

while @@fetch_status = 0

begin

 IF (@fullsql = '')

 SET @fullsql = @sql

 ELSE

 SET @fullsql = @fullsql + ' UNION ALL '+ @sql

 fetch next from curse into @sql

end -- while fetch

close curse

deallocate curse

exec(@fullsql)

-- CSV EXPORT

--

-- How to export data to CSV format. Note: this is not supported by

-- SQLServer and requires some jumping through hoops.

-- Start by setting the correct text format in the options screen

-- Set SQLCMD Mode from the Query menu

:OUT C:\directories\demo.csv

SET NOCOUNT ON; SELECT * FROM Customers

-- CSV IMPORT

--

-- How to import data from CSV format. Note: this is not supported

-- by SQLServer and requires some jumping through hoops.

BULK INSERT Staff FROM 'C:\directories\demo.csv'

 WITH (

 FIRSTROW = 2,

 FIELDTERMINATOR = ',',

 ROWTERMINATOR = '\n',

 TABLOCK

)

-- If you want to overrule the IDENTITY column

Advanced SQL Testing with SQLServer

Notes:

Advanced SQL Testing (cc)-by-sa – Evan Leybourn Page 90 of 90

BULK INSERT Staff FROM 'C:\directories\demo.csv'

 WITH (

 FIRSTROW = 2,

 FIELDTERMINATOR = ',',

 ROWTERMINATOR = '\n',

 TABLOCK,

 KEEPIDENTITY

)

-- STATISTICS (Optional)

--

-- Look at the statistics engine and rules to update

UPDATE STATISTICS Customers

-- Database Console Command

DBCC SHOW_STATISTICS (Customers, customerpk)

-- PROFILER (Optional)

--

-- Initialisation from SSMS

-- Save to file/table

-- Show events; select errors>user errors and errors>error log

-- Show output > Run all queries > Show output

-- Show Performance Monitor

-- Show Data Collector and Reports

-- Run all queries
